Given "r =(1+t^2)\\hat{i} + (4t-3)\\hat{j} + (2t^2-6t)\\hat{k}"
differentiating it with respect to t,
"r' = 2t\\hat{i} + 4\\hat{j} + (4t-6)\\hat{k}"
unit tangent vector,
"\\hat{r'} = \\frac{\\vec{r'}}{|r'|} = \\frac{2t\\hat{i} + 4\\hat{j} + (4t-6)\\hat{k}}{\\sqrt{4t^2 + 16 + (4t-6)^2}}" "=\\frac{2t\\hat{i} + 4\\hat{j} + (4t-6)\\hat{k}}{\\sqrt{(20t^2-12t+52)}} = \\frac{t\\hat{i} + 2\\hat{j} + (2t-3)\\hat{k}}{\\sqrt{(5t^2-3t+13)}}"
Comments
Leave a comment