Given r = ( 1 + t 2 ) i ^ + ( 4 t − 3 ) j ^ + ( 2 t 2 − 6 t ) k ^ r =(1+t^2)\hat{i} + (4t-3)\hat{j} + (2t^2-6t)\hat{k} r = ( 1 + t 2 ) i ^ + ( 4 t − 3 ) j ^ + ( 2 t 2 − 6 t ) k ^
differentiating it with respect to t,
r ′ = 2 t i ^ + 4 j ^ + ( 4 t − 6 ) k ^ r' = 2t\hat{i} + 4\hat{j} + (4t-6)\hat{k} r ′ = 2 t i ^ + 4 j ^ + ( 4 t − 6 ) k ^
unit tangent vector,
r ′ ^ = r ′ ⃗ ∣ r ′ ∣ = 2 t i ^ + 4 j ^ + ( 4 t − 6 ) k ^ 4 t 2 + 16 + ( 4 t − 6 ) 2 \hat{r'} = \frac{\vec{r'}}{|r'|} = \frac{2t\hat{i} + 4\hat{j} + (4t-6)\hat{k}}{\sqrt{4t^2 + 16 + (4t-6)^2}} r ′ ^ = ∣ r ′ ∣ r ′ = 4 t 2 + 16 + ( 4 t − 6 ) 2 2 t i ^ + 4 j ^ + ( 4 t − 6 ) k ^ = 2 t i ^ + 4 j ^ + ( 4 t − 6 ) k ^ ( 20 t 2 − 12 t + 52 ) = t i ^ + 2 j ^ + ( 2 t − 3 ) k ^ ( 5 t 2 − 3 t + 13 ) =\frac{2t\hat{i} + 4\hat{j} + (4t-6)\hat{k}}{\sqrt{(20t^2-12t+52)}} = \frac{t\hat{i} + 2\hat{j} + (2t-3)\hat{k}}{\sqrt{(5t^2-3t+13)}} = ( 20 t 2 − 12 t + 52 ) 2 t i ^ + 4 j ^ + ( 4 t − 6 ) k ^ = ( 5 t 2 − 3 t + 13 ) t i ^ + 2 j ^ + ( 2 t − 3 ) k ^
Comments