(i)
"={Ax^2+2A+Bx^2+Cx\\over 2x(x^2+2)}"
"A+B=0"
"C=\\dfrac{3}{2}"
"2A=-\\dfrac{1}{2}"
"A=-\\dfrac{1}{4}, B=\\dfrac{1}{4}, C=\\dfrac{3}{2}"
(ii)
"={Ax^2+A+Bx^2-Bx+Cx-C \\over (x-1)(x^2+1)}"
"A+B=0"
"-B+C=2"
"A-C=1"
"A=\\dfrac{3}{2}, B=-\\dfrac{3}{2}, C=\\dfrac{1}{2}"
(iii)
"=1+{A \\over x}+{Bx \\over x^2-x+1}+{C \\over x^2-x+1}="
"=1+{Ax^2-Ax+A+Bx^2+Cx \\over x(x^2-x+1)}"
"A+B=1"
"-A+C=0"
"A=1"
"A=1,B=0,C=1"
(iv)
Let "x^2+3x+1=0"
"D=(3)^2-4(1)(1)=5"
"x=\\dfrac{-3\\pm\\sqrt{5}}{2}"
"={1\\over 4}(2x+3+\\sqrt{5})(2x+3-\\sqrt{5})"
"{3x+2 \\over (x-2)(x^2+3x+1)}={A \\over x-2}+{2B \\over 2x+3+\\sqrt{5}}+{2C \\over 2x+3-\\sqrt{5}}="
"={4Ax^2+12Ax+4A+(x-2)(4Bx+6B-2\\sqrt{5}B+4Cx+6C+2\\sqrt{5}C)\\over 4(x-2)(x^2+3x+1)}"
"4A+4B+4C=0"
"12A-8B+6B-2\\sqrt{5}B-8C+6C+2\\sqrt{5}C=3"
"4A-12B+4\\sqrt{5}B-12C-4\\sqrt{5}C=2"
"A+B+C=0"
"-12B-12C-2B-2\\sqrt{5}B-2C+2\\sqrt{5}C=3"
"-16B+4\\sqrt{5}B-16C-4\\sqrt{5}C=2"
"A+B+C=0"
"-14B-14C-2\\sqrt{5}B+2\\sqrt{5}C=3"
"-8B+2\\sqrt{5}B-8C-2\\sqrt{5}C=1"
"A=\\dfrac{2}{11}"
"B=-\\dfrac{1}{11}-\\dfrac{\\sqrt{5}}{44}"
"C=-\\dfrac{1}{11}+\\dfrac{\\sqrt{5}}{44}"
Comments
Leave a comment