(i)
3 x − 1 2 x ( x 2 + 2 ) = A x + B x x 2 + 2 + C x 2 + 2 = {3x-1 \over 2x(x^2+2)}={A \over x}+{Bx \over x^2+2}+{C \over x^2+2}
= 2 x ( x 2 + 2 ) 3 x − 1 = x A + x 2 + 2 B x + x 2 + 2 C =
= A x 2 + 2 A + B x 2 + C x 2 x ( x 2 + 2 ) ={Ax^2+2A+Bx^2+Cx\over 2x(x^2+2)} = 2 x ( x 2 + 2 ) A x 2 + 2 A + B x 2 + C x A + B = 0 A+B=0 A + B = 0
C = 3 2 C=\dfrac{3}{2} C = 2 3
2 A = − 1 2 2A=-\dfrac{1}{2} 2 A = − 2 1
A = − 1 4 , B = 1 4 , C = 3 2 A=-\dfrac{1}{4}, B=\dfrac{1}{4}, C=\dfrac{3}{2} A = − 4 1 , B = 4 1 , C = 2 3
3 x − 1 2 x ( x 2 + 2 ) = − 1 4 x + 1 4 x x 2 + 2 + 3 2 x 2 + 2 {3x-1 \over 2x(x^2+2)}={-\dfrac{1}{4} \over x}+{\dfrac{1}{4}x \over x^2+2}+{\dfrac{3}{2}\over x^2+2} 2 x ( x 2 + 2 ) 3 x − 1 = x − 4 1 + x 2 + 2 4 1 x + x 2 + 2 2 3 (ii)
2 x + 1 ( x − 1 ) ( x 2 + 1 ) = A x − 1 + B x x 2 + 1 + C x 2 + 1 = {2x+1 \over (x-1)(x^2+1)}={A \over x-1}+{Bx \over x^2+1}+{C \over x^2+1}
= ( x − 1 ) ( x 2 + 1 ) 2 x + 1 = x − 1 A + x 2 + 1 B x + x 2 + 1 C =
= A x 2 + A + B x 2 − B x + C x − C ( x − 1 ) ( x 2 + 1 ) ={Ax^2+A+Bx^2-Bx+Cx-C \over (x-1)(x^2+1)} = ( x − 1 ) ( x 2 + 1 ) A x 2 + A + B x 2 − B x + C x − C A + B = 0 A+B=0 A + B = 0
− B + C = 2 -B+C=2 − B + C = 2
A − C = 1 A-C=1 A − C = 1
A = 3 2 , B = − 3 2 , C = 1 2 A=\dfrac{3}{2}, B=-\dfrac{3}{2}, C=\dfrac{1}{2} A = 2 3 , B = − 2 3 , C = 2 1
2 x + 1 ( x − 1 ) ( x 2 + 1 ) = 3 2 x − 1 + − 3 2 x x 2 + 1 + 1 2 x 2 + 1 {2x+1 \over (x-1)(x^2+1)}={\dfrac{3}{2} \over x-1}+{-\dfrac{3}{2}x \over x^2+1}+{\dfrac{1}{2} \over x^2+1} ( x − 1 ) ( x 2 + 1 ) 2 x + 1 = x − 1 2 3 + x 2 + 1 − 2 3 x + x 2 + 1 2 1
(iii)
x 3 + x + 1 x ( x 2 − x + 1 ) = 1 + x 2 + 1 x ( x 2 − x + 1 ) = {x^3+x+1 \over x(x^2-x+1)}=1+{x^2+1 \over x(x^2-x+1)}= x ( x 2 − x + 1 ) x 3 + x + 1 = 1 + x ( x 2 − x + 1 ) x 2 + 1 =
= 1 + A x + B x x 2 − x + 1 + C x 2 − x + 1 = =1+{A \over x}+{Bx \over x^2-x+1}+{C \over x^2-x+1}= = 1 + x A + x 2 − x + 1 B x + x 2 − x + 1 C =
= 1 + A x 2 − A x + A + B x 2 + C x x ( x 2 − x + 1 ) =1+{Ax^2-Ax+A+Bx^2+Cx \over x(x^2-x+1)} = 1 + x ( x 2 − x + 1 ) A x 2 − A x + A + B x 2 + C x A + B = 1 A+B=1 A + B = 1
− A + C = 0 -A+C=0 − A + C = 0
A = 1 A=1 A = 1
A = 1 , B = 0 , C = 1 A=1,B=0,C=1 A = 1 , B = 0 , C = 1
x 3 + x + 1 x ( x 2 − x + 1 ) = 1 + 1 x + 1 x 2 − x + 1 {x^3+x+1 \over x(x^2-x+1)}=1+{1\over x}+{ 1\over x^2-x+1} x ( x 2 − x + 1 ) x 3 + x + 1 = 1 + x 1 + x 2 − x + 1 1
(iv)
3 x + 2 ( x − 2 ) ( x 2 + 3 x + 1 ) {3x+2 \over (x-2)(x^2+3x+1)} ( x − 2 ) ( x 2 + 3 x + 1 ) 3 x + 2
Let x 2 + 3 x + 1 = 0 x^2+3x+1=0 x 2 + 3 x + 1 = 0
D = ( 3 ) 2 − 4 ( 1 ) ( 1 ) = 5 D=(3)^2-4(1)(1)=5 D = ( 3 ) 2 − 4 ( 1 ) ( 1 ) = 5
x = − 3 ± 5 2 x=\dfrac{-3\pm\sqrt{5}}{2} x = 2 − 3 ± 5
x 2 + 3 x + 1 = ( x − − 3 − 5 2 ) ( x − − 3 + 5 2 ) = x^2+3x+1=(x-\dfrac{-3-\sqrt{5}}{2})(x-\dfrac{-3+\sqrt{5}}{2})= x 2 + 3 x + 1 = ( x − 2 − 3 − 5 ) ( x − 2 − 3 + 5 ) =
= 1 4 ( 2 x + 3 + 5 ) ( 2 x + 3 − 5 ) ={1\over 4}(2x+3+\sqrt{5})(2x+3-\sqrt{5}) = 4 1 ( 2 x + 3 + 5 ) ( 2 x + 3 − 5 )
3 x + 2 ( x − 2 ) ( x 2 + 3 x + 1 ) = A x − 2 + 2 B 2 x + 3 + 5 + 2 C 2 x + 3 − 5 = {3x+2 \over (x-2)(x^2+3x+1)}={A \over x-2}+{2B \over 2x+3+\sqrt{5}}+{2C \over 2x+3-\sqrt{5}}= ( x − 2 ) ( x 2 + 3 x + 1 ) 3 x + 2 = x − 2 A + 2 x + 3 + 5 2 B + 2 x + 3 − 5 2 C =
= 4 A x 2 + 12 A x + 4 A + ( x − 2 ) ( 4 B x + 6 B − 2 5 B + 4 C x + 6 C + 2 5 C ) 4 ( x − 2 ) ( x 2 + 3 x + 1 ) ={4Ax^2+12Ax+4A+(x-2)(4Bx+6B-2\sqrt{5}B+4Cx+6C+2\sqrt{5}C)\over 4(x-2)(x^2+3x+1)} = 4 ( x − 2 ) ( x 2 + 3 x + 1 ) 4 A x 2 + 12 A x + 4 A + ( x − 2 ) ( 4 B x + 6 B − 2 5 B + 4 C x + 6 C + 2 5 C )
4 A + 4 B + 4 C = 0 4A+4B+4C=0 4 A + 4 B + 4 C = 0
12 A − 8 B + 6 B − 2 5 B − 8 C + 6 C + 2 5 C = 3 12A-8B+6B-2\sqrt{5}B-8C+6C+2\sqrt{5}C=3 12 A − 8 B + 6 B − 2 5 B − 8 C + 6 C + 2 5 C = 3
4 A − 12 B + 4 5 B − 12 C − 4 5 C = 2 4A-12B+4\sqrt{5}B-12C-4\sqrt{5}C=2 4 A − 12 B + 4 5 B − 12 C − 4 5 C = 2
A + B + C = 0 A+B+C=0 A + B + C = 0
− 12 B − 12 C − 2 B − 2 5 B − 2 C + 2 5 C = 3 -12B-12C-2B-2\sqrt{5}B-2C+2\sqrt{5}C=3 − 12 B − 12 C − 2 B − 2 5 B − 2 C + 2 5 C = 3
− 16 B + 4 5 B − 16 C − 4 5 C = 2 -16B+4\sqrt{5}B-16C-4\sqrt{5}C=2 − 16 B + 4 5 B − 16 C − 4 5 C = 2
A + B + C = 0 A+B+C=0 A + B + C = 0
− 14 B − 14 C − 2 5 B + 2 5 C = 3 -14B-14C-2\sqrt{5}B+2\sqrt{5}C=3 − 14 B − 14 C − 2 5 B + 2 5 C = 3
− 8 B + 2 5 B − 8 C − 2 5 C = 1 -8B+2\sqrt{5}B-8C-2\sqrt{5}C=1 − 8 B + 2 5 B − 8 C − 2 5 C = 1
A = 2 11 A=\dfrac{2}{11} A = 11 2
B = − 1 11 − 5 44 B=-\dfrac{1}{11}-\dfrac{\sqrt{5}}{44} B = − 11 1 − 44 5
C = − 1 11 + 5 44 C=-\dfrac{1}{11}+\dfrac{\sqrt{5}}{44} C = − 11 1 + 44 5
3 x + 2 ( x − 2 ) ( x 2 + 3 x + 1 ) = 2 11 x − 2 + − 2 11 − 5 22 2 x + 3 + 5 + − 2 11 + 5 22 2 x + 3 − 5 {3x+2 \over (x-2)(x^2+3x+1)}={\dfrac{2}{11} \over x-2}+{-\dfrac{2}{11}-\dfrac{\sqrt{5}}{22} \over 2x+3+\sqrt{5}}+{-\dfrac{2}{11}+\dfrac{\sqrt{5}}{22} \over 2x+3-\sqrt{5}} ( x − 2 ) ( x 2 + 3 x + 1 ) 3 x + 2 = x − 2 11 2 + 2 x + 3 + 5 − 11 2 − 22 5 + 2 x + 3 − 5 − 11 2 + 22 5
Comments