If the  normal at the point P ( a t 1 2 , 2 a t 1 ) P(at_1^2, 2at_1) P ( a t 1 2  , 2 a t 1  )   meets the parabola y 2 = 4 a x y^2=4ax y 2 = 4 a x   again at Q ( a t 2 2 , 2 a t 2 ) Q(at_2^2, 2at_2) Q ( a t 2 2  , 2 a t 2  )   then
t 2 = − t 1 − 2 t 1 t_2=-t_1-{2\over t_1} t 2  = − t 1  − t 1  2   
Q = ( a ( t 1 + 2 t 1 ) 2 , − 2 a ( t 1 + 2 t 1 ) ) Q=(a(t_1+{2\over t_1})^2, -2a(t_1+{2\over t_1})) Q = ( a ( t 1  + t 1  2  ) 2 , − 2 a ( t 1  + t 1  2  ))  Let M ( x , y ) M(x,y) M ( x , y )   be the midpoint of P Q PQ PQ   
( x , y ) = ( a t 1 2 + a ( t 1 + 2 t 1 ) 2 2 , 2 a t 1 − 2 a ( t 1 + 2 t 1 ) 2 ) (x, y)=\big(\dfrac{at_1^2+a(t_1+\dfrac{2}{t_1})^2}{2}, \dfrac{2at_1-2a(t_1+\dfrac{2}{t_1})}{2}\big) ( x , y ) = ( 2 a t 1 2  + a ( t 1  + t 1  2  ) 2  , 2 2 a t 1  − 2 a ( t 1  + t 1  2  )  )  t 1 = − 2 a y t_1=-\dfrac{2a}{y} t 1  = − y 2 a    
x = a t 1 2 + 2 a + 2 a t 1 2 x=at_1^2+2a+\dfrac{2a}{t_1^2} x = a t 1 2  + 2 a + t 1 2  2 a    
x − 2 a = 4 a 3 y 2 + y 2 2 a x-2a=\dfrac{4a^3}{y^2}+\dfrac{y^2}{2a} x − 2 a = y 2 4 a 3  + 2 a y 2    
2 ( x − 2 a ) = y 2 a + 8 a 3 y 2 2(x-2a)=\dfrac{y^2}{a}+\dfrac{8a^3}{y^2} 2 ( x − 2 a ) = a y 2  + y 2 8 a 3   
P Q 2 = ( − a t 1 2 + a ( t 1 + 2 t 1 ) 2 ) 2 + ( − 2 a ( t 1 + 2 t 1 ) − 2 a t 1 ) 2 PQ^2=(-at_1^2+a(t_1+\dfrac{2}{t_1})^2)^2+(-2a(t_1+{2\over t_1})-2at_1)^2 P Q 2 = ( − a t 1 2  + a ( t 1  + t 1  2  ) 2 ) 2 + ( − 2 a ( t 1  + t 1  2  ) − 2 a t 1  ) 2  
P Q 2 = ( 4 a + 4 a t 1 2 ) 2 + ( 4 a t 1 + 4 a t 1 ) 2 PQ^2=(4a+\dfrac{4a}{t_1^2})^2+(4at_1+\dfrac{4a}{t_1})^2 P Q 2 = ( 4 a + t 1 2  4 a  ) 2 + ( 4 a t 1  + t 1  4 a  ) 2   
P Q 2 = 16 a 2 ( 1 + 2 t 1 2 + 1 t 1 2 + t 1 2 + 2 + 1 t 1 4 ) PQ^2=16a^2(1+\dfrac{2}{t_1^2}+\dfrac{1}{t_1^2}+t_1^2+2+\dfrac{1}{t_1^4}) P Q 2 = 16 a 2 ( 1 + t 1 2  2  + t 1 2  1  + t 1 2  + 2 + t 1 4  1  )  
P Q 2 = 16 a 2 ( t 1 2 + 3 t 1 2 + 1 t 1 4 + 3 ) PQ^2=16a^2(t_1^2+\dfrac{3}{t_1^2}+\dfrac{1}{t_1^4}+3) P Q 2 = 16 a 2 ( t 1 2  + t 1 2  3  + t 1 4  1  + 3 )  Consider the function 
f ( u ) = u + 3 u + 1 u 2 + 3 , u > 0 f(u)=u+\dfrac{3}{u}+\dfrac{1}{u^2}+3, u>0 f ( u ) = u + u 3  + u 2 1  + 3 , u > 0  
f ′ ( u ) = 1 − 3 u 2 − 2 u 3 f'(u)=1-\dfrac{3}{u^2}-\dfrac{2}{u^3} f ′ ( u ) = 1 − u 2 3  − u 3 2   
f ′ ( u ) = 0 = > u 3 − 3 u − 2 u 3 = 0 f'(u)=0=>\dfrac{u^3-3u-2}{u^3}=0 f ′ ( u ) = 0 => u 3 u 3 − 3 u − 2  = 0  
u 2 ( u − 2 ) + 2 u ( u − 2 ) + ( u − 2 ) = 0 u^2(u-2)+2u(u-2)+(u-2)=0 u 2 ( u − 2 ) + 2 u ( u − 2 ) + ( u − 2 ) = 0   
( u − 2 ) ( u 2 + 2 u + 1 ) = 0 (u-2)(u^2+2u+1)=0 ( u − 2 ) ( u 2 + 2 u + 1 ) = 0  
( u − 2 ) ( u + 1 ) 2 = 0 (u-2)(u+1)^2=0 ( u − 2 ) ( u + 1 ) 2 = 0  Since u > 0 , u>0, u > 0 ,   we take u = 2 u=2 u = 2   
0 < u < 2 , f ′ ( u ) < 0 , f ( u )   d e c r e a s e s 0<u<2, f'(u)<0, f(u) \  decreases 0 < u < 2 , f ′ ( u ) < 0 , f ( u )   d ecre a ses   
u > 2 , f ′ ( u ) > 0 , f ( u )   i n c r e a s e s u>2, f'(u)>0, f(u) \  increases u > 2 , f ′ ( u ) > 0 , f ( u )   in cre a ses   
f ( 2 ) = 2 + 3 2 + 1 4 + 3 = 27 4 f(2)=2+\dfrac{3}{2}+\dfrac{1}{4}+3=\dfrac{27}{4} f ( 2 ) = 2 + 2 3  + 4 1  + 3 = 4 27    
 P Q 2 ≥ 16 a 2 ( 27 4 ) PQ^2\geq16a^2(\dfrac{27}{4}) P Q 2 ≥ 16 a 2 ( 4 27  )   
P Q 2 ≥ 108 a 2 PQ^2\geq108a^2 P Q 2 ≥ 108 a 2   
P Q ≥ 6 3 a , a > 0 PQ\geq6\sqrt{3}a, a>0 PQ ≥ 6 3  a , a > 0                              
Comments