If the normal at the point P ( a t 1 2 , 2 a t 1 ) P(at_1^2, 2at_1) P ( a t 1 2 , 2 a t 1 ) meets the parabola y 2 = 4 a x y^2=4ax y 2 = 4 a x again at Q ( a t 2 2 , 2 a t 2 ) Q(at_2^2, 2at_2) Q ( a t 2 2 , 2 a t 2 ) then
t 2 = − t 1 − 2 t 1 t_2=-t_1-{2\over t_1} t 2 = − t 1 − t 1 2
Q = ( a ( t 1 + 2 t 1 ) 2 , − 2 a ( t 1 + 2 t 1 ) ) Q=(a(t_1+{2\over t_1})^2, -2a(t_1+{2\over t_1})) Q = ( a ( t 1 + t 1 2 ) 2 , − 2 a ( t 1 + t 1 2 )) Let M ( x , y ) M(x,y) M ( x , y ) be the midpoint of P Q PQ PQ
( x , y ) = ( a t 1 2 + a ( t 1 + 2 t 1 ) 2 2 , 2 a t 1 − 2 a ( t 1 + 2 t 1 ) 2 ) (x, y)=\big(\dfrac{at_1^2+a(t_1+\dfrac{2}{t_1})^2}{2}, \dfrac{2at_1-2a(t_1+\dfrac{2}{t_1})}{2}\big) ( x , y ) = ( 2 a t 1 2 + a ( t 1 + t 1 2 ) 2 , 2 2 a t 1 − 2 a ( t 1 + t 1 2 ) ) t 1 = − 2 a y t_1=-\dfrac{2a}{y} t 1 = − y 2 a
x = a t 1 2 + 2 a + 2 a t 1 2 x=at_1^2+2a+\dfrac{2a}{t_1^2} x = a t 1 2 + 2 a + t 1 2 2 a
x − 2 a = 4 a 3 y 2 + y 2 2 a x-2a=\dfrac{4a^3}{y^2}+\dfrac{y^2}{2a} x − 2 a = y 2 4 a 3 + 2 a y 2
2 ( x − 2 a ) = y 2 a + 8 a 3 y 2 2(x-2a)=\dfrac{y^2}{a}+\dfrac{8a^3}{y^2} 2 ( x − 2 a ) = a y 2 + y 2 8 a 3
P Q 2 = ( − a t 1 2 + a ( t 1 + 2 t 1 ) 2 ) 2 + ( − 2 a ( t 1 + 2 t 1 ) − 2 a t 1 ) 2 PQ^2=(-at_1^2+a(t_1+\dfrac{2}{t_1})^2)^2+(-2a(t_1+{2\over t_1})-2at_1)^2 P Q 2 = ( − a t 1 2 + a ( t 1 + t 1 2 ) 2 ) 2 + ( − 2 a ( t 1 + t 1 2 ) − 2 a t 1 ) 2
P Q 2 = ( 4 a + 4 a t 1 2 ) 2 + ( 4 a t 1 + 4 a t 1 ) 2 PQ^2=(4a+\dfrac{4a}{t_1^2})^2+(4at_1+\dfrac{4a}{t_1})^2 P Q 2 = ( 4 a + t 1 2 4 a ) 2 + ( 4 a t 1 + t 1 4 a ) 2
P Q 2 = 16 a 2 ( 1 + 2 t 1 2 + 1 t 1 2 + t 1 2 + 2 + 1 t 1 4 ) PQ^2=16a^2(1+\dfrac{2}{t_1^2}+\dfrac{1}{t_1^2}+t_1^2+2+\dfrac{1}{t_1^4}) P Q 2 = 16 a 2 ( 1 + t 1 2 2 + t 1 2 1 + t 1 2 + 2 + t 1 4 1 )
P Q 2 = 16 a 2 ( t 1 2 + 3 t 1 2 + 1 t 1 4 + 3 ) PQ^2=16a^2(t_1^2+\dfrac{3}{t_1^2}+\dfrac{1}{t_1^4}+3) P Q 2 = 16 a 2 ( t 1 2 + t 1 2 3 + t 1 4 1 + 3 ) Consider the function
f ( u ) = u + 3 u + 1 u 2 + 3 , u > 0 f(u)=u+\dfrac{3}{u}+\dfrac{1}{u^2}+3, u>0 f ( u ) = u + u 3 + u 2 1 + 3 , u > 0
f ′ ( u ) = 1 − 3 u 2 − 2 u 3 f'(u)=1-\dfrac{3}{u^2}-\dfrac{2}{u^3} f ′ ( u ) = 1 − u 2 3 − u 3 2
f ′ ( u ) = 0 = > u 3 − 3 u − 2 u 3 = 0 f'(u)=0=>\dfrac{u^3-3u-2}{u^3}=0 f ′ ( u ) = 0 => u 3 u 3 − 3 u − 2 = 0
u 2 ( u − 2 ) + 2 u ( u − 2 ) + ( u − 2 ) = 0 u^2(u-2)+2u(u-2)+(u-2)=0 u 2 ( u − 2 ) + 2 u ( u − 2 ) + ( u − 2 ) = 0
( u − 2 ) ( u 2 + 2 u + 1 ) = 0 (u-2)(u^2+2u+1)=0 ( u − 2 ) ( u 2 + 2 u + 1 ) = 0
( u − 2 ) ( u + 1 ) 2 = 0 (u-2)(u+1)^2=0 ( u − 2 ) ( u + 1 ) 2 = 0 Since u > 0 , u>0, u > 0 , we take u = 2 u=2 u = 2
0 < u < 2 , f ′ ( u ) < 0 , f ( u ) d e c r e a s e s 0<u<2, f'(u)<0, f(u) \ decreases 0 < u < 2 , f ′ ( u ) < 0 , f ( u ) d ecre a ses
u > 2 , f ′ ( u ) > 0 , f ( u ) i n c r e a s e s u>2, f'(u)>0, f(u) \ increases u > 2 , f ′ ( u ) > 0 , f ( u ) in cre a ses
f ( 2 ) = 2 + 3 2 + 1 4 + 3 = 27 4 f(2)=2+\dfrac{3}{2}+\dfrac{1}{4}+3=\dfrac{27}{4} f ( 2 ) = 2 + 2 3 + 4 1 + 3 = 4 27
P Q 2 ≥ 16 a 2 ( 27 4 ) PQ^2\geq16a^2(\dfrac{27}{4}) P Q 2 ≥ 16 a 2 ( 4 27 )
P Q 2 ≥ 108 a 2 PQ^2\geq108a^2 P Q 2 ≥ 108 a 2
P Q ≥ 6 3 a , a > 0 PQ\geq6\sqrt{3}a, a>0 PQ ≥ 6 3 a , a > 0
Comments