If the normal at the point "P(at_1^2, 2at_1)" meets the parabola "y^2=4ax" again at "Q(at_2^2, 2at_2)" then
"Q=(a(t_1+{2\\over t_1})^2, -2a(t_1+{2\\over t_1}))"
Let "M(x,y)" be the midpoint of "PQ"
"t_1=-\\dfrac{2a}{y}"
"x=at_1^2+2a+\\dfrac{2a}{t_1^2}"
"x-2a=\\dfrac{4a^3}{y^2}+\\dfrac{y^2}{2a}"
"PQ^2=(-at_1^2+a(t_1+\\dfrac{2}{t_1})^2)^2+(-2a(t_1+{2\\over t_1})-2at_1)^2"
"PQ^2=(4a+\\dfrac{4a}{t_1^2})^2+(4at_1+\\dfrac{4a}{t_1})^2"
"PQ^2=16a^2(1+\\dfrac{2}{t_1^2}+\\dfrac{1}{t_1^2}+t_1^2+2+\\dfrac{1}{t_1^4})"
"PQ^2=16a^2(t_1^2+\\dfrac{3}{t_1^2}+\\dfrac{1}{t_1^4}+3)"
Consider the function
"f(u)=u+\\dfrac{3}{u}+\\dfrac{1}{u^2}+3, u>0""f'(u)=1-\\dfrac{3}{u^2}-\\dfrac{2}{u^3}"
"f'(u)=0=>\\dfrac{u^3-3u-2}{u^3}=0"
"u^2(u-2)+2u(u-2)+(u-2)=0"
"(u-2)(u^2+2u+1)=0"
"(u-2)(u+1)^2=0"
Since "u>0," we take "u=2"
"0<u<2, f'(u)<0, f(u) \\ decreases"
"u>2, f'(u)>0, f(u) \\ increases"
"f(2)=2+\\dfrac{3}{2}+\\dfrac{1}{4}+3=\\dfrac{27}{4}"
"PQ^2\\geq16a^2(\\dfrac{27}{4})"
"PQ^2\\geq108a^2"
Comments
Leave a comment