Question #124549
Derive an equation x(t) for the instantaneous position of the car as a function of time. Identify the value x when t=0s.use the given data for the time to reach 400m to calculate a constant of interaction c
Formula:
V(t) =A(1-e^-t/tmax)
Numbers =
t(400m) (s) =10.5
Tmax=7.1s
1
Expert's answer
2020-06-30T15:26:36-0400

v=A(1ettmax)v=A(1-e^\frac{t}{tmax})

x=vdx=A1ettmaxdtx=\smallint vdx=A\smallint 1-e\frac{-t}{tmax}dt

=A[t+tmax×ettmax]+C=A[t+tmax×e^\frac{-t}{tmax}]+C

400=A[10.5+7.1e10.57.1]+C400=A[10.5+7.1e^\frac{-10.5}{7.1}]+C

C=400A(12.12)C=400-A(12.12)


X=A[t+tmax×ettmax]+40012.12AX=A[t+tmax×e^\frac{-t}{tmax}]+400-12.12A

X=A[t+tmax×ettmax12.12]+400X=A[t+tmax×e^\frac{-t}{tmax}-12.12]+400

At t=0

X=A[0+7.112.12]+400X=A[0+7.1-12.12]+400

=4005.02A=400-5.02A

=394.98A=394.98A is the answer.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS