v=A(1−ettmax)v=A(1-e^\frac{t}{tmax})v=A(1−etmaxt)
x=∫vdx=A∫1−e−ttmaxdtx=\smallint vdx=A\smallint 1-e\frac{-t}{tmax}dtx=∫vdx=A∫1−etmax−tdt
=A[t+tmax×e−ttmax]+C=A[t+tmax×e^\frac{-t}{tmax}]+C=A[t+tmax×etmax−t]+C
400=A[10.5+7.1e−10.57.1]+C400=A[10.5+7.1e^\frac{-10.5}{7.1}]+C400=A[10.5+7.1e7.1−10.5]+C
C=400−A(12.12)C=400-A(12.12)C=400−A(12.12)
At t=0
X=A[0+7.1−12.12]+400X=A[0+7.1-12.12]+400X=A[0+7.1−12.12]+400
=400−5.02A=400-5.02A=400−5.02A
=394.98A=394.98A=394.98A is the answer.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments