We have "I=\\oint\\limits_C(x+z)dx+(x-y)dy+xdz".
The Stokes' formula is:
"\\oint\\limits_C(Pdx + Qdy + Rdz)=\\iint\\limits_S(\\frac{\\partial{R}}{\\partial{y}}-\\frac{\\partial{Q}}{\\partial{z}})dydz+"
"+(\\frac{\\partial{P}}{\\partial{z}}-\\frac{\\partial{R}}{\\partial{x}})dzdx + (\\frac{\\partial{Q}}{\\partial{x}}-\\frac{\\partial{P}}{\\partial{y}})dxdy".
Where "S -" the part of the plane "(z=4)" bounded by an ellipse "C".
And "C" is the ellipse "(\\frac{x^2}{16}+\\frac{y^2}{25} = \\frac{x^2}{4^2}+\\frac{y^2}{5^2}=\\frac{x^2}{a^2}+\\frac{y^2}{b^2})".
And "P = x+z", "Q=x-y", "R=x".
Find the necessary partial derivatives:
"\\frac{\\partial{R}}{\\partial{y}}=0,\n\\frac{\\partial{Q}}{\\partial{z}}=0,\n\\frac{\\partial{P}}{\\partial{z}}=1,\n\\frac{\\partial{R}}{\\partial{x}}=1,\n\\frac{\\partial{Q}}{\\partial{x}}=1,\n\\frac{\\partial{P}}{\\partial{y}}=0."
So, we can write:
"\\iint\\limits_S(0-0)dydz+\\iint\\limits_S(1-1)dzdx+\\iint\\limits_S(1-0)dxdy".
"\\iint\\limits_Sdxdy = I".
The integrand is equal to one "(f(x, y)=1)", so the double integral is equal to the surface area "S".
It means that the "I" is equal to the area of the ellipse:
"I=\\pi ab=4\\times5\\times\\pi=20\\pi."
Answer: "I=20\\pi \\approx62.8"
Comments
Leave a comment