We have I=C∮(x+z)dx+(x−y)dy+xdz.
The Stokes' formula is:
C∮(Pdx+Qdy+Rdz)=S∬(∂y∂R−∂z∂Q)dydz+
+(∂z∂P−∂x∂R)dzdx+(∂x∂Q−∂y∂P)dxdy.
Where S− the part of the plane (z=4) bounded by an ellipse C.
And C is the ellipse (16x2+25y2=42x2+52y2=a2x2+b2y2).
And P=x+z, Q=x−y, R=x.
Find the necessary partial derivatives:
∂y∂R=0,∂z∂Q=0,∂z∂P=1,∂x∂R=1,∂x∂Q=1,∂y∂P=0.
So, we can write:
S∬(0−0)dydz+S∬(1−1)dzdx+S∬(1−0)dxdy.
S∬dxdy=I.
The integrand is equal to one (f(x,y)=1), so the double integral is equal to the surface area S.
It means that the I is equal to the area of the ellipse:
I=πab=4×5×π=20π.
Answer: I=20π≈62.8
Comments
Leave a comment