Answer to Question #125702 in Calculus for Sunil

Question #125702
Evaluate the following integral using Stokes theorem

Integralof over C (x+z)dx+(x-y)dy+xdz)

Where C is an ellipse

(x^2/16)+(y^2/25)=1 z=4
1
Expert's answer
2020-07-09T19:33:39-0400

We have I=C(x+z)dx+(xy)dy+xdzI=\oint\limits_C(x+z)dx+(x-y)dy+xdz.


The Stokes' formula is:


C(Pdx+Qdy+Rdz)=S(RyQz)dydz+\oint\limits_C(Pdx + Qdy + Rdz)=\iint\limits_S(\frac{\partial{R}}{\partial{y}}-\frac{\partial{Q}}{\partial{z}})dydz+

+(PzRx)dzdx+(QxPy)dxdy+(\frac{\partial{P}}{\partial{z}}-\frac{\partial{R}}{\partial{x}})dzdx + (\frac{\partial{Q}}{\partial{x}}-\frac{\partial{P}}{\partial{y}})dxdy.


Where SS - the part of the plane (z=4)(z=4) bounded by an ellipse CC.

And CC is the ellipse (x216+y225=x242+y252=x2a2+y2b2)(\frac{x^2}{16}+\frac{y^2}{25} = \frac{x^2}{4^2}+\frac{y^2}{5^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}).

And P=x+zP = x+z, Q=xyQ=x-y, R=xR=x.


Find the necessary partial derivatives:

Ry=0,Qz=0,Pz=1,Rx=1,Qx=1,Py=0.\frac{\partial{R}}{\partial{y}}=0, \frac{\partial{Q}}{\partial{z}}=0, \frac{\partial{P}}{\partial{z}}=1, \frac{\partial{R}}{\partial{x}}=1, \frac{\partial{Q}}{\partial{x}}=1, \frac{\partial{P}}{\partial{y}}=0.


So, we can write:

S(00)dydz+S(11)dzdx+S(10)dxdy\iint\limits_S(0-0)dydz+\iint\limits_S(1-1)dzdx+\iint\limits_S(1-0)dxdy.

Sdxdy=I\iint\limits_Sdxdy = I.


The integrand is equal to one (f(x,y)=1)(f(x, y)=1), so the double integral is equal to the surface area SS.

It means that the II is equal to the area of the ellipse:

I=πab=4×5×π=20π.I=\pi ab=4\times5\times\pi=20\pi.


Answer: I=20π62.8I=20\pi \approx62.8


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment