Question #126909
Prove that

(v.del)v = 1/2 del v^2 - v×(del×v)

v is a vector
1
Expert's answer
2020-07-20T19:04:30-0400

SInce, (https://en.wikipedia.org/wiki/Del)

(uv)=(u)v+(v)u+u×(×v)+v×(×u){\displaystyle \nabla ({\vec {u}}\cdot {\vec {v}})=({\vec {u}}\cdot \nabla ){\vec {v}}+({\vec {v}}\cdot \nabla ){\vec {u}}+{\vec {u}}\times (\nabla \times {\vec {v}})+{\vec {v}}\times (\nabla \times {\vec {u}})}

Now, put u=v\overrightarrow{u}=\overrightarrow{v} ,we get

(vv)=(v)v+(v)v+v×(×v)+v×(×v){\displaystyle \nabla ({\vec {v}}\cdot {\vec {v}})=({\vec {v}}\cdot \nabla ){\vec {v}}+({\vec {v}}\cdot \nabla ){\vec {v}}+{\vec {v}}\times (\nabla \times {\vec {v}})+{\vec {v}}\times (\nabla \times {\vec {v}})}

    (v2)=2(v)v+2v×(×v)    (v)v=12(v2)v×(×v)\implies {\displaystyle \nabla ( {v^2})=2({\vec {v}}\cdot \nabla ){\vec {v}}+2{\vec {v}}\times (\nabla \times {\vec {v}})}\\ \implies{ ({\vec {v}}\cdot \nabla ){\vec {v}}= \frac{1}{2}{\displaystyle \nabla ( {v^2})}-{\vec {v}}\times (\nabla \times {\vec {v}})}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS