Question #127237
a. A manufacturer’s marginal revenue function is MR=105-x-0.3x^2. Find the increase in
the manufacturer’s total revenue if production is increased from 10 to 20 units.

b. A firm has a marginal revenue given by MR=(3/2x+7)-(1/20), where x is the output. Find
the corresponding demand function.

c. Given that the elasticity of demand for a commodity is given by e_xp=3-2p, where p denotes the price per unit of the commodity. find the demand function x.
1
Expert's answer
2020-07-23T17:45:05-0400

a) MR=105x0.3x2MR = 105 - x - 0.3x^2

Total Revenue (TR) is found by integrating MR


TR=MRdxTR = \int MR dx

=(105x0.3x2)dx= \int (105 - x - 0.3x^2)dx

=[105xx220.1x3+k]= [105x - \dfrac {x^2} {2} - 0.1x^3 + k]


Increase in Total revenue is found by TR(20) - TR(10)


TR(20)=105(20)20220.1(20)3+kTR(20) = 105(20) - \dfrac {20^2} {2} - 0.1(20)^3 + k

=2100200800+k= 2100 - 200 - 800 + k

=$(1,100+k)= \$(1,100 + k)

TR(10)=105(10)10220.1(103)+kTR(10) = 105(10) - \dfrac {10^2} {2} - 0.1(10^3) + k

=105050100+k= 1050 - 50 - 100 + k

=$(900+k)= \$(900 + k)


Thus,

Increase in TR = $(1100+k)$(900+k)\$(1100 + k) - \$(900 + k)

=1100900+kk= 1100 - 900 + k - k

=$200= \$200




b) MR=32x+7120MR = \dfrac {3} {2x + 7} - \dfrac {1} {20}


TR=MRdxTR = \int MR dx

=(32x+7120)dx= \int ( \dfrac {3} {2x + 7} - \dfrac {1} {20}) dx

=32ln2x+7120x+A= \dfrac {3} {2} ln|2x + 7| - \dfrac {1} {20} x + A


AR=TRxAR = \dfrac {TR} {x}


=32ln2x+7x120xx+Ax= \dfrac {\dfrac {3} {2} ln|2x + 7|} {x} - \dfrac {\dfrac {1} {20} x} {x} + \dfrac {A} {x}


But, AR = Price (P)

Therefore, the demand function is given by:

P==32xln2x+7+Ax120P = = \dfrac {3} {2x} ln|2x + 7| + \dfrac {A} {x} - \dfrac {1} {20} ,


where A is a constant.

c) exp=32pe_{xp} = 3 - 2p

dXdP×px=32p\dfrac {dX} {dP} × \dfrac {p} {x} = 3 - 2p


dXx=(3p2)dP\dfrac {dX} {x} = (\dfrac {3} {p} - 2)dP


=>(1x)dX=(3p2)dP=> \int (\dfrac {1} {x})dX = \int (\dfrac {3} {p} - 2)dP

=>lnx=3lnp2p+lnA=> ln|x| = 3ln|p| - 2p + lnA

Where, lnA is a constant

=>elnx=elnp32p+lnA=> e^{lnx} = e^{lnp^3 - 2p + lnA}

Therefore, the demand function is given by :


x=Ap3e2px = Ap^3e^{-2p}






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS