a) "MR = 105 - x - 0.3x^2"
Total Revenue (TR) is found by integrating MR
"TR = \\int MR dx"
"= \\int (105 - x - 0.3x^2)dx"
"= [105x - \\dfrac {x^2} {2} - 0.1x^3 + k]"
Increase in Total revenue is found by TR(20) - TR(10)
"TR(20) = 105(20) - \\dfrac {20^2} {2} - 0.1(20)^3 + k"
"= 2100 - 200 - 800 + k"
"= \\$(1,100 + k)"
"TR(10) = 105(10) - \\dfrac {10^2} {2} - 0.1(10^3) + k"
"= 1050 - 50 - 100 + k"
"= \\$(900 + k)"
Thus,
Increase in TR = "\\$(1100 + k) - \\$(900 + k)"
"= 1100 - 900 + k - k"
"= \\$200"
b) "MR = \\dfrac {3} {2x + 7} - \\dfrac {1} {20}"
"TR = \\int MR dx"
"= \\int ( \\dfrac {3} {2x + 7} - \\dfrac {1} {20}) dx"
"= \\dfrac {3} {2} ln|2x + 7| - \\dfrac {1} {20} x + A"
"AR = \\dfrac {TR} {x}"
"= \\dfrac {\\dfrac {3} {2} ln|2x + 7|} {x} - \\dfrac {\\dfrac {1} {20} x} {x} + \\dfrac {A} {x}"
But, AR = Price (P)
Therefore, the demand function is given by:
"P = = \\dfrac {3} {2x} ln|2x + 7| + \\dfrac {A} {x} - \\dfrac {1} {20}" ,
where A is a constant.
c) "e_{xp} = 3 - 2p"
"\\dfrac {dX} {dP} \u00d7 \\dfrac {p} {x} = 3 - 2p"
"\\dfrac {dX} {x} = (\\dfrac {3} {p} - 2)dP"
"=> \\int (\\dfrac {1} {x})dX = \\int (\\dfrac {3} {p} - 2)dP"
"=> ln|x| = 3ln|p| - 2p + lnA"
Where, lnA is a constant
"=> e^{lnx} = e^{lnp^3 - 2p + lnA}"
Therefore, the demand function is given by :
"x = Ap^3e^{-2p}"
Comments
Leave a comment