∬ x 2 + y 2 ≤ 25 , x ≥ 0 , y ≥ 0 k x 2 + y 2 d x d y = \iint_{x^2 + y^2 \leq 25, \ x \geq 0, \ y \geq 0} k \sqrt{x^2 + y^2} \,dx\,dy = ∬ x 2 + y 2 ≤ 25 , x ≥ 0 , y ≥ 0 k x 2 + y 2 d x d y =
= ∫ 0 5 d x ∫ 0 25 − x 2 k x 2 + y 2 d y = = \int_{0}^{5} \,dx \int_{0}^{\sqrt{25 -x^2}} k \sqrt{x^2 + y^2} \,dy = = ∫ 0 5 d x ∫ 0 25 − x 2 k x 2 + y 2 d y =
{ x = r c o s ϕ y = r s i n ϕ \begin{cases} x = rcos\phi \\ y = rsin\phi\\ \end{cases} \\ { x = rcos ϕ y = rs in ϕ
= ∫ 0 π / 2 d ϕ ∫ 0 5 k ( r c o s ϕ ) 2 + ( r s i n ϕ ) 2 r d r = = \int_{0}^{\pi/2} \,d\phi \int_{0}^{5} k \sqrt{(rcos\phi)^2 + (rsin\phi)^2} \,rdr = = ∫ 0 π /2 d ϕ ∫ 0 5 k ( rcos ϕ ) 2 + ( rs in ϕ ) 2 r d r =
= ∫ 0 π / 2 d ϕ ∫ 0 5 k r 2 d r = ∫ 0 π / 2 k ∗ 5 3 / 3 d ϕ = k ∗ 5 3 / 3 ∗ π / 2 = 125 π k / 6 = \int_{0}^{\pi/2} \,d\phi \int_{0}^{5} kr^2 \,dr = \int_{0}^{\pi/2} k *5^3/3 \,d\phi = k *5^3/3 * \pi/2 = 125\pi k/6 = ∫ 0 π /2 d ϕ ∫ 0 5 k r 2 d r = ∫ 0 π /2 k ∗ 5 3 /3 d ϕ = k ∗ 5 3 /3 ∗ π /2 = 125 πk /6
Comments