"a_0={1\\over 2L}\\displaystyle\\int_{-L}^Lf(x)dx={1\\over 2L}\\displaystyle\\int_{-L}^L(x-x^2)dx="
"={1\\over 2L}[{x^2 \\over 2}-{x^3 \\over 3}]\\begin{matrix}\n L \\\\\n -L\n\\end{matrix}={1\\over 2L}({L^2 \\over 2}-{L^3 \\over 3}-({L^2 \\over 2}+{L^3 \\over 3}))="
"=-{L^2 \\over 3}"
"a_n={1\\over L}\\displaystyle\\int_{-L}^Lf(x)\\cos ({n\\pi x \\over b})dx="
"={1\\over L}\\displaystyle\\int_{-L}^L(x-x^2)\\cos ({n\\pi x \\over L})dx"
"\\int x\\cos({n\\pi x \\over L})dx={L \\over n\\pi}x\\sin({n\\pi x \\over L})-{L \\over n\\pi}\\int \\sin({n\\pi x \\over L})dx="
"={L \\over n\\pi}x\\sin({n\\pi x \\over L})+{L^2 \\over n^2\\pi^2}\\cos({n\\pi x \\over L})+C_1"
"={L x^2\\over n\\pi}\\sin({n\\pi x \\over L})+{2L^2x \\over n^2\\pi^2}\\cos({n\\pi x \\over L})-{2L^2 \\over n^2\\pi^2}\\int \\cos({n\\pi x \\over L})dx="
"={Lx^2 \\over n\\pi}\\sin({n\\pi x \\over L})+{2L^2x \\over n^2\\pi^2}\\cos({n\\pi x \\over L})-{2L^3 \\over n^3\\pi^3}\\sin({n\\pi x \\over L})+C_2"
"-{1\\over L}\\bigg[{Lx^2 \\over n\\pi}\\sin({n\\pi x \\over L})+{2L^2x \\over n^2\\pi^2}\\cos({n\\pi x \\over L})-{2L^3 \\over n^3\\pi^3}\\sin({n\\pi x \\over L})\\bigg]\\begin{matrix}\n L\\\\\n -L\n\\end{matrix}="
"=0-(-1)^n {4L^2 \\over n^2\\pi^2}=-(-1)^n {4L^2 \\over n^2\\pi^2}"
"={1\\over L}\\displaystyle\\int_{-L}^L(x-x^2)\\sin ({n\\pi x \\over L})dx"
"\\int x\\sin({n\\pi x \\over L})dx=-{L \\over n\\pi}x\\cos({n\\pi x \\over L})+{L \\over n\\pi}\\int \\cos({n\\pi x \\over L})dx="
"=-{L \\over n\\pi}x\\cos({n\\pi x \\over L})+{L^2 \\over n^2\\pi^2}\\sin({n\\pi x \\over L})+C_3"
"\\int x^2\\sin({n\\pi x \\over L})dx=-{L \\over n\\pi}x^2\\cos({n\\pi x \\over L})+{2L \\over n\\pi}\\int x\\cos({n\\pi x \\over L})dx="
"=-{L x^2\\over n\\pi}\\cos({n\\pi x \\over L})+{2L^2x \\over n^2\\pi^2}\\sin({n\\pi x \\over L})-{2L^2 \\over n^2\\pi^2}\\int \\sin({n\\pi x \\over L})dx="
"=-{L x^2\\over n\\pi}\\cos({n\\pi x \\over L})+{2L^2x \\over n^2\\pi^2}\\sin({n\\pi x \\over L})+{2L^3\\over n^3\\pi^3}\\cos({n\\pi x \\over L})+C_4"
"-{1\\over L}\\bigg[-{Lx^2 \\over n\\pi}\\cos({n\\pi x \\over L})+{2L^2x \\over n^2\\pi^2}\\sin({n\\pi x \\over L})+{2L^3 \\over n^3\\pi^3}\\cos({n\\pi x \\over L})\\bigg]\\begin{matrix}\n L\\\\\n -L\n\\end{matrix}="
"+\\displaystyle\\sum_{i=1}^n(-(-1)^n{2L \\over n\\pi})\\sin({n\\pi x \\over L})"
Comments
Leave a comment