Answer to Question #128113 in Calculus for Vicky

Question #128113
Find the Fourier series for the function
f(x) = (x-x)^2,-L < x < L
1
Expert's answer
2020-08-03T18:24:24-0400


"f(x)=x-x^2"

"a_0={1\\over 2L}\\displaystyle\\int_{-L}^Lf(x)dx={1\\over 2L}\\displaystyle\\int_{-L}^L(x-x^2)dx="

"={1\\over 2L}[{x^2 \\over 2}-{x^3 \\over 3}]\\begin{matrix}\n L \\\\\n -L\n\\end{matrix}={1\\over 2L}({L^2 \\over 2}-{L^3 \\over 3}-({L^2 \\over 2}+{L^3 \\over 3}))="

"=-{L^2 \\over 3}"

"a_n={1\\over L}\\displaystyle\\int_{-L}^Lf(x)\\cos ({n\\pi x \\over b})dx="

"={1\\over L}\\displaystyle\\int_{-L}^L(x-x^2)\\cos ({n\\pi x \\over L})dx"

"\\int x\\cos({n\\pi x \\over L})dx={L \\over n\\pi}x\\sin({n\\pi x \\over L})-{L \\over n\\pi}\\int \\sin({n\\pi x \\over L})dx="

"={L \\over n\\pi}x\\sin({n\\pi x \\over L})+{L^2 \\over n^2\\pi^2}\\cos({n\\pi x \\over L})+C_1"


"\\int x^2\\cos({n\\pi x \\over L})dx={L \\over n\\pi}x^2\\sin({n\\pi x \\over L})-{2L \\over n\\pi}\\int x\\sin({n\\pi x \\over L})dx="

"={L x^2\\over n\\pi}\\sin({n\\pi x \\over L})+{2L^2x \\over n^2\\pi^2}\\cos({n\\pi x \\over L})-{2L^2 \\over n^2\\pi^2}\\int \\cos({n\\pi x \\over L})dx="

"={Lx^2 \\over n\\pi}\\sin({n\\pi x \\over L})+{2L^2x \\over n^2\\pi^2}\\cos({n\\pi x \\over L})-{2L^3 \\over n^3\\pi^3}\\sin({n\\pi x \\over L})+C_2"


"a_n={1\\over L}\\bigg[{L \\over n\\pi}x\\sin({n\\pi x \\over L})+{L^2 \\over n^2\\pi^2}\\cos({n\\pi x \\over L})\\bigg]\\begin{matrix}\n L\\\\\n -L\n\\end{matrix}-"

"-{1\\over L}\\bigg[{Lx^2 \\over n\\pi}\\sin({n\\pi x \\over L})+{2L^2x \\over n^2\\pi^2}\\cos({n\\pi x \\over L})-{2L^3 \\over n^3\\pi^3}\\sin({n\\pi x \\over L})\\bigg]\\begin{matrix}\n L\\\\\n -L\n\\end{matrix}="

"=0-(-1)^n {4L^2 \\over n^2\\pi^2}=-(-1)^n {4L^2 \\over n^2\\pi^2}"


"b_n={1\\over L}\\displaystyle\\int_{-L}^Lf(x)\\sin ({n\\pi x \\over b})dx="

"={1\\over L}\\displaystyle\\int_{-L}^L(x-x^2)\\sin ({n\\pi x \\over L})dx"

"\\int x\\sin({n\\pi x \\over L})dx=-{L \\over n\\pi}x\\cos({n\\pi x \\over L})+{L \\over n\\pi}\\int \\cos({n\\pi x \\over L})dx="

"=-{L \\over n\\pi}x\\cos({n\\pi x \\over L})+{L^2 \\over n^2\\pi^2}\\sin({n\\pi x \\over L})+C_3"

"\\int x^2\\sin({n\\pi x \\over L})dx=-{L \\over n\\pi}x^2\\cos({n\\pi x \\over L})+{2L \\over n\\pi}\\int x\\cos({n\\pi x \\over L})dx="

"=-{L x^2\\over n\\pi}\\cos({n\\pi x \\over L})+{2L^2x \\over n^2\\pi^2}\\sin({n\\pi x \\over L})-{2L^2 \\over n^2\\pi^2}\\int \\sin({n\\pi x \\over L})dx="

"=-{L x^2\\over n\\pi}\\cos({n\\pi x \\over L})+{2L^2x \\over n^2\\pi^2}\\sin({n\\pi x \\over L})+{2L^3\\over n^3\\pi^3}\\cos({n\\pi x \\over L})+C_4"


"b_n={1\\over L}\\bigg[-{Lx \\over n\\pi}\\cos({n\\pi x \\over L})+{L^2 \\over n^2\\pi^2}\\sin({n\\pi x \\over L})\\bigg]\\begin{matrix}\n L\\\\\n -L\n\\end{matrix}-"

"-{1\\over L}\\bigg[-{Lx^2 \\over n\\pi}\\cos({n\\pi x \\over L})+{2L^2x \\over n^2\\pi^2}\\sin({n\\pi x \\over L})+{2L^3 \\over n^3\\pi^3}\\cos({n\\pi x \\over L})\\bigg]\\begin{matrix}\n L\\\\\n -L\n\\end{matrix}="


"=-{2L \\over n\\pi}(-1)^n-0=-(-1)^n{2L \\over n\\pi}"


"f(x)=-{L^2 \\over 3}+\\displaystyle\\sum_{i=1}^n(-(-1)^n {4L^2\\over n^2\\pi^2})\\cos({n\\pi x \\over L}) +"

"+\\displaystyle\\sum_{i=1}^n(-(-1)^n{2L \\over n\\pi})\\sin({n\\pi x \\over L})"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS