Question #128113
Find the Fourier series for the function
f(x) = (x-x)^2,-L < x < L
1
Expert's answer
2020-08-03T18:24:24-0400


f(x)=xx2f(x)=x-x^2

a0=12LLLf(x)dx=12LLL(xx2)dx=a_0={1\over 2L}\displaystyle\int_{-L}^Lf(x)dx={1\over 2L}\displaystyle\int_{-L}^L(x-x^2)dx=

=12L[x22x33]LL=12L(L22L33(L22+L33))=={1\over 2L}[{x^2 \over 2}-{x^3 \over 3}]\begin{matrix} L \\ -L \end{matrix}={1\over 2L}({L^2 \over 2}-{L^3 \over 3}-({L^2 \over 2}+{L^3 \over 3}))=

=L23=-{L^2 \over 3}

an=1LLLf(x)cos(nπxb)dx=a_n={1\over L}\displaystyle\int_{-L}^Lf(x)\cos ({n\pi x \over b})dx=

=1LLL(xx2)cos(nπxL)dx={1\over L}\displaystyle\int_{-L}^L(x-x^2)\cos ({n\pi x \over L})dx

xcos(nπxL)dx=Lnπxsin(nπxL)Lnπsin(nπxL)dx=\int x\cos({n\pi x \over L})dx={L \over n\pi}x\sin({n\pi x \over L})-{L \over n\pi}\int \sin({n\pi x \over L})dx=

=Lnπxsin(nπxL)+L2n2π2cos(nπxL)+C1={L \over n\pi}x\sin({n\pi x \over L})+{L^2 \over n^2\pi^2}\cos({n\pi x \over L})+C_1


x2cos(nπxL)dx=Lnπx2sin(nπxL)2Lnπxsin(nπxL)dx=\int x^2\cos({n\pi x \over L})dx={L \over n\pi}x^2\sin({n\pi x \over L})-{2L \over n\pi}\int x\sin({n\pi x \over L})dx=

=Lx2nπsin(nπxL)+2L2xn2π2cos(nπxL)2L2n2π2cos(nπxL)dx=={L x^2\over n\pi}\sin({n\pi x \over L})+{2L^2x \over n^2\pi^2}\cos({n\pi x \over L})-{2L^2 \over n^2\pi^2}\int \cos({n\pi x \over L})dx=

=Lx2nπsin(nπxL)+2L2xn2π2cos(nπxL)2L3n3π3sin(nπxL)+C2={Lx^2 \over n\pi}\sin({n\pi x \over L})+{2L^2x \over n^2\pi^2}\cos({n\pi x \over L})-{2L^3 \over n^3\pi^3}\sin({n\pi x \over L})+C_2


an=1L[Lnπxsin(nπxL)+L2n2π2cos(nπxL)]LLa_n={1\over L}\bigg[{L \over n\pi}x\sin({n\pi x \over L})+{L^2 \over n^2\pi^2}\cos({n\pi x \over L})\bigg]\begin{matrix} L\\ -L \end{matrix}-

1L[Lx2nπsin(nπxL)+2L2xn2π2cos(nπxL)2L3n3π3sin(nπxL)]LL=-{1\over L}\bigg[{Lx^2 \over n\pi}\sin({n\pi x \over L})+{2L^2x \over n^2\pi^2}\cos({n\pi x \over L})-{2L^3 \over n^3\pi^3}\sin({n\pi x \over L})\bigg]\begin{matrix} L\\ -L \end{matrix}=

=0(1)n4L2n2π2=(1)n4L2n2π2=0-(-1)^n {4L^2 \over n^2\pi^2}=-(-1)^n {4L^2 \over n^2\pi^2}


bn=1LLLf(x)sin(nπxb)dx=b_n={1\over L}\displaystyle\int_{-L}^Lf(x)\sin ({n\pi x \over b})dx=

=1LLL(xx2)sin(nπxL)dx={1\over L}\displaystyle\int_{-L}^L(x-x^2)\sin ({n\pi x \over L})dx

xsin(nπxL)dx=Lnπxcos(nπxL)+Lnπcos(nπxL)dx=\int x\sin({n\pi x \over L})dx=-{L \over n\pi}x\cos({n\pi x \over L})+{L \over n\pi}\int \cos({n\pi x \over L})dx=

=Lnπxcos(nπxL)+L2n2π2sin(nπxL)+C3=-{L \over n\pi}x\cos({n\pi x \over L})+{L^2 \over n^2\pi^2}\sin({n\pi x \over L})+C_3

x2sin(nπxL)dx=Lnπx2cos(nπxL)+2Lnπxcos(nπxL)dx=\int x^2\sin({n\pi x \over L})dx=-{L \over n\pi}x^2\cos({n\pi x \over L})+{2L \over n\pi}\int x\cos({n\pi x \over L})dx=

=Lx2nπcos(nπxL)+2L2xn2π2sin(nπxL)2L2n2π2sin(nπxL)dx==-{L x^2\over n\pi}\cos({n\pi x \over L})+{2L^2x \over n^2\pi^2}\sin({n\pi x \over L})-{2L^2 \over n^2\pi^2}\int \sin({n\pi x \over L})dx=

=Lx2nπcos(nπxL)+2L2xn2π2sin(nπxL)+2L3n3π3cos(nπxL)+C4=-{L x^2\over n\pi}\cos({n\pi x \over L})+{2L^2x \over n^2\pi^2}\sin({n\pi x \over L})+{2L^3\over n^3\pi^3}\cos({n\pi x \over L})+C_4


bn=1L[Lxnπcos(nπxL)+L2n2π2sin(nπxL)]LLb_n={1\over L}\bigg[-{Lx \over n\pi}\cos({n\pi x \over L})+{L^2 \over n^2\pi^2}\sin({n\pi x \over L})\bigg]\begin{matrix} L\\ -L \end{matrix}-

1L[Lx2nπcos(nπxL)+2L2xn2π2sin(nπxL)+2L3n3π3cos(nπxL)]LL=-{1\over L}\bigg[-{Lx^2 \over n\pi}\cos({n\pi x \over L})+{2L^2x \over n^2\pi^2}\sin({n\pi x \over L})+{2L^3 \over n^3\pi^3}\cos({n\pi x \over L})\bigg]\begin{matrix} L\\ -L \end{matrix}=


=2Lnπ(1)n0=(1)n2Lnπ=-{2L \over n\pi}(-1)^n-0=-(-1)^n{2L \over n\pi}


f(x)=L23+i=1n((1)n4L2n2π2)cos(nπxL)+f(x)=-{L^2 \over 3}+\displaystyle\sum_{i=1}^n(-(-1)^n {4L^2\over n^2\pi^2})\cos({n\pi x \over L}) +

+i=1n((1)n2Lnπ)sin(nπxL)+\displaystyle\sum_{i=1}^n(-(-1)^n{2L \over n\pi})\sin({n\pi x \over L})



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS