2020-07-31T11:43:46-04:00
Find the Fourier series for the function
f(x) = (x-x)^2,-L < x < L
1
2020-08-03T18:24:24-0400
f ( x ) = x − x 2 f(x)=x-x^2 f ( x ) = x − x 2
a 0 = 1 2 L ∫ − L L f ( x ) d x = 1 2 L ∫ − L L ( x − x 2 ) d x = a_0={1\over 2L}\displaystyle\int_{-L}^Lf(x)dx={1\over 2L}\displaystyle\int_{-L}^L(x-x^2)dx= a 0 = 2 L 1 ∫ − L L f ( x ) d x = 2 L 1 ∫ − L L ( x − x 2 ) d x =
= 1 2 L [ x 2 2 − x 3 3 ] L − L = 1 2 L ( L 2 2 − L 3 3 − ( L 2 2 + L 3 3 ) ) = ={1\over 2L}[{x^2 \over 2}-{x^3 \over 3}]\begin{matrix}
L \\
-L
\end{matrix}={1\over 2L}({L^2 \over 2}-{L^3 \over 3}-({L^2 \over 2}+{L^3 \over 3}))= = 2 L 1 [ 2 x 2 − 3 x 3 ] L − L = 2 L 1 ( 2 L 2 − 3 L 3 − ( 2 L 2 + 3 L 3 )) =
= − L 2 3 =-{L^2 \over 3} = − 3 L 2
a n = 1 L ∫ − L L f ( x ) cos ( n π x b ) d x = a_n={1\over L}\displaystyle\int_{-L}^Lf(x)\cos ({n\pi x \over b})dx= a n = L 1 ∫ − L L f ( x ) cos ( b nπ x ) d x =
= 1 L ∫ − L L ( x − x 2 ) cos ( n π x L ) d x ={1\over L}\displaystyle\int_{-L}^L(x-x^2)\cos ({n\pi x \over L})dx = L 1 ∫ − L L ( x − x 2 ) cos ( L nπ x ) d x
∫ x cos ( n π x L ) d x = L n π x sin ( n π x L ) − L n π ∫ sin ( n π x L ) d x = \int x\cos({n\pi x \over L})dx={L \over n\pi}x\sin({n\pi x \over L})-{L \over n\pi}\int \sin({n\pi x \over L})dx= ∫ x cos ( L nπ x ) d x = nπ L x sin ( L nπ x ) − nπ L ∫ sin ( L nπ x ) d x =
= L n π x sin ( n π x L ) + L 2 n 2 π 2 cos ( n π x L ) + C 1 ={L \over n\pi}x\sin({n\pi x \over L})+{L^2 \over n^2\pi^2}\cos({n\pi x \over L})+C_1 = nπ L x sin ( L nπ x ) + n 2 π 2 L 2 cos ( L nπ x ) + C 1
∫ x 2 cos ( n π x L ) d x = L n π x 2 sin ( n π x L ) − 2 L n π ∫ x sin ( n π x L ) d x = \int x^2\cos({n\pi x \over L})dx={L \over n\pi}x^2\sin({n\pi x \over L})-{2L \over n\pi}\int x\sin({n\pi x \over L})dx= ∫ x 2 cos ( L nπ x ) d x = nπ L x 2 sin ( L nπ x ) − nπ 2 L ∫ x sin ( L nπ x ) d x =
= L x 2 n π sin ( n π x L ) + 2 L 2 x n 2 π 2 cos ( n π x L ) − 2 L 2 n 2 π 2 ∫ cos ( n π x L ) d x = ={L x^2\over n\pi}\sin({n\pi x \over L})+{2L^2x \over n^2\pi^2}\cos({n\pi x \over L})-{2L^2 \over n^2\pi^2}\int \cos({n\pi x \over L})dx= = nπ L x 2 sin ( L nπ x ) + n 2 π 2 2 L 2 x cos ( L nπ x ) − n 2 π 2 2 L 2 ∫ cos ( L nπ x ) d x =
= L x 2 n π sin ( n π x L ) + 2 L 2 x n 2 π 2 cos ( n π x L ) − 2 L 3 n 3 π 3 sin ( n π x L ) + C 2 ={Lx^2 \over n\pi}\sin({n\pi x \over L})+{2L^2x \over n^2\pi^2}\cos({n\pi x \over L})-{2L^3 \over n^3\pi^3}\sin({n\pi x \over L})+C_2 = nπ L x 2 sin ( L nπ x ) + n 2 π 2 2 L 2 x cos ( L nπ x ) − n 3 π 3 2 L 3 sin ( L nπ x ) + C 2
a n = 1 L [ L n π x sin ( n π x L ) + L 2 n 2 π 2 cos ( n π x L ) ] L − L − a_n={1\over L}\bigg[{L \over n\pi}x\sin({n\pi x \over L})+{L^2 \over n^2\pi^2}\cos({n\pi x \over L})\bigg]\begin{matrix}
L\\
-L
\end{matrix}- a n = L 1 [ nπ L x sin ( L nπ x ) + n 2 π 2 L 2 cos ( L nπ x ) ] L − L −
− 1 L [ L x 2 n π sin ( n π x L ) + 2 L 2 x n 2 π 2 cos ( n π x L ) − 2 L 3 n 3 π 3 sin ( n π x L ) ] L − L = -{1\over L}\bigg[{Lx^2 \over n\pi}\sin({n\pi x \over L})+{2L^2x \over n^2\pi^2}\cos({n\pi x \over L})-{2L^3 \over n^3\pi^3}\sin({n\pi x \over L})\bigg]\begin{matrix}
L\\
-L
\end{matrix}= − L 1 [ nπ L x 2 sin ( L nπ x ) + n 2 π 2 2 L 2 x cos ( L nπ x ) − n 3 π 3 2 L 3 sin ( L nπ x ) ] L − L =
= 0 − ( − 1 ) n 4 L 2 n 2 π 2 = − ( − 1 ) n 4 L 2 n 2 π 2 =0-(-1)^n {4L^2 \over n^2\pi^2}=-(-1)^n {4L^2 \over n^2\pi^2} = 0 − ( − 1 ) n n 2 π 2 4 L 2 = − ( − 1 ) n n 2 π 2 4 L 2
b n = 1 L ∫ − L L f ( x ) sin ( n π x b ) d x = b_n={1\over L}\displaystyle\int_{-L}^Lf(x)\sin ({n\pi x \over b})dx= b n = L 1 ∫ − L L f ( x ) sin ( b nπ x ) d x =
= 1 L ∫ − L L ( x − x 2 ) sin ( n π x L ) d x ={1\over L}\displaystyle\int_{-L}^L(x-x^2)\sin ({n\pi x \over L})dx = L 1 ∫ − L L ( x − x 2 ) sin ( L nπ x ) d x
∫ x sin ( n π x L ) d x = − L n π x cos ( n π x L ) + L n π ∫ cos ( n π x L ) d x = \int x\sin({n\pi x \over L})dx=-{L \over n\pi}x\cos({n\pi x \over L})+{L \over n\pi}\int \cos({n\pi x \over L})dx= ∫ x sin ( L nπ x ) d x = − nπ L x cos ( L nπ x ) + nπ L ∫ cos ( L nπ x ) d x =
= − L n π x cos ( n π x L ) + L 2 n 2 π 2 sin ( n π x L ) + C 3 =-{L \over n\pi}x\cos({n\pi x \over L})+{L^2 \over n^2\pi^2}\sin({n\pi x \over L})+C_3 = − nπ L x cos ( L nπ x ) + n 2 π 2 L 2 sin ( L nπ x ) + C 3
∫ x 2 sin ( n π x L ) d x = − L n π x 2 cos ( n π x L ) + 2 L n π ∫ x cos ( n π x L ) d x = \int x^2\sin({n\pi x \over L})dx=-{L \over n\pi}x^2\cos({n\pi x \over L})+{2L \over n\pi}\int x\cos({n\pi x \over L})dx= ∫ x 2 sin ( L nπ x ) d x = − nπ L x 2 cos ( L nπ x ) + nπ 2 L ∫ x cos ( L nπ x ) d x =
= − L x 2 n π cos ( n π x L ) + 2 L 2 x n 2 π 2 sin ( n π x L ) − 2 L 2 n 2 π 2 ∫ sin ( n π x L ) d x = =-{L x^2\over n\pi}\cos({n\pi x \over L})+{2L^2x \over n^2\pi^2}\sin({n\pi x \over L})-{2L^2 \over n^2\pi^2}\int \sin({n\pi x \over L})dx= = − nπ L x 2 cos ( L nπ x ) + n 2 π 2 2 L 2 x sin ( L nπ x ) − n 2 π 2 2 L 2 ∫ sin ( L nπ x ) d x =
= − L x 2 n π cos ( n π x L ) + 2 L 2 x n 2 π 2 sin ( n π x L ) + 2 L 3 n 3 π 3 cos ( n π x L ) + C 4 =-{L x^2\over n\pi}\cos({n\pi x \over L})+{2L^2x \over n^2\pi^2}\sin({n\pi x \over L})+{2L^3\over n^3\pi^3}\cos({n\pi x \over L})+C_4 = − nπ L x 2 cos ( L nπ x ) + n 2 π 2 2 L 2 x sin ( L nπ x ) + n 3 π 3 2 L 3 cos ( L nπ x ) + C 4
b n = 1 L [ − L x n π cos ( n π x L ) + L 2 n 2 π 2 sin ( n π x L ) ] L − L − b_n={1\over L}\bigg[-{Lx \over n\pi}\cos({n\pi x \over L})+{L^2 \over n^2\pi^2}\sin({n\pi x \over L})\bigg]\begin{matrix}
L\\
-L
\end{matrix}- b n = L 1 [ − nπ Lx cos ( L nπ x ) + n 2 π 2 L 2 sin ( L nπ x ) ] L − L −
− 1 L [ − L x 2 n π cos ( n π x L ) + 2 L 2 x n 2 π 2 sin ( n π x L ) + 2 L 3 n 3 π 3 cos ( n π x L ) ] L − L = -{1\over L}\bigg[-{Lx^2 \over n\pi}\cos({n\pi x \over L})+{2L^2x \over n^2\pi^2}\sin({n\pi x \over L})+{2L^3 \over n^3\pi^3}\cos({n\pi x \over L})\bigg]\begin{matrix}
L\\
-L
\end{matrix}= − L 1 [ − nπ L x 2 cos ( L nπ x ) + n 2 π 2 2 L 2 x sin ( L nπ x ) + n 3 π 3 2 L 3 cos ( L nπ x ) ] L − L =
= − 2 L n π ( − 1 ) n − 0 = − ( − 1 ) n 2 L n π =-{2L \over n\pi}(-1)^n-0=-(-1)^n{2L \over n\pi} = − nπ 2 L ( − 1 ) n − 0 = − ( − 1 ) n nπ 2 L
f ( x ) = − L 2 3 + ∑ i = 1 n ( − ( − 1 ) n 4 L 2 n 2 π 2 ) cos ( n π x L ) + f(x)=-{L^2 \over 3}+\displaystyle\sum_{i=1}^n(-(-1)^n {4L^2\over n^2\pi^2})\cos({n\pi x \over L}) + f ( x ) = − 3 L 2 + i = 1 ∑ n ( − ( − 1 ) n n 2 π 2 4 L 2 ) cos ( L nπ x ) +
+ ∑ i = 1 n ( − ( − 1 ) n 2 L n π ) sin ( n π x L ) +\displaystyle\sum_{i=1}^n(-(-1)^n{2L \over n\pi})\sin({n\pi x \over L}) + i = 1 ∑ n ( − ( − 1 ) n nπ 2 L ) sin ( L nπ x )
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments