Find the Fourier series for the function
f(x) = (x-x)^2,-L < x < L
1
2020-08-03T18:24:24-0400
f(x)=x−x2
a0=2L1∫−LLf(x)dx=2L1∫−LL(x−x2)dx=
=2L1[2x2−3x3]L−L=2L1(2L2−3L3−(2L2+3L3))=
=−3L2
an=L1∫−LLf(x)cos(bnπx)dx=
=L1∫−LL(x−x2)cos(Lnπx)dx
∫xcos(Lnπx)dx=nπLxsin(Lnπx)−nπL∫sin(Lnπx)dx=
=nπLxsin(Lnπx)+n2π2L2cos(Lnπx)+C1
∫x2cos(Lnπx)dx=nπLx2sin(Lnπx)−nπ2L∫xsin(Lnπx)dx=
=nπLx2sin(Lnπx)+n2π22L2xcos(Lnπx)−n2π22L2∫cos(Lnπx)dx=
=nπLx2sin(Lnπx)+n2π22L2xcos(Lnπx)−n3π32L3sin(Lnπx)+C2
an=L1[nπLxsin(Lnπx)+n2π2L2cos(Lnπx)]L−L−
−L1[nπLx2sin(Lnπx)+n2π22L2xcos(Lnπx)−n3π32L3sin(Lnπx)]L−L=
=0−(−1)nn2π24L2=−(−1)nn2π24L2
bn=L1∫−LLf(x)sin(bnπx)dx=
=L1∫−LL(x−x2)sin(Lnπx)dx
∫xsin(Lnπx)dx=−nπLxcos(Lnπx)+nπL∫cos(Lnπx)dx=
=−nπLxcos(Lnπx)+n2π2L2sin(Lnπx)+C3
∫x2sin(Lnπx)dx=−nπLx2cos(Lnπx)+nπ2L∫xcos(Lnπx)dx=
=−nπLx2cos(Lnπx)+n2π22L2xsin(Lnπx)−n2π22L2∫sin(Lnπx)dx=
=−nπLx2cos(Lnπx)+n2π22L2xsin(Lnπx)+n3π32L3cos(Lnπx)+C4
bn=L1[−nπLxcos(Lnπx)+n2π2L2sin(Lnπx)]L−L−
−L1[−nπLx2cos(Lnπx)+n2π22L2xsin(Lnπx)+n3π32L3cos(Lnπx)]L−L=
=−nπ2L(−1)n−0=−(−1)nnπ2L
f(x)=−3L2+i=1∑n(−(−1)nn2π24L2)cos(Lnπx)+
+i=1∑n(−(−1)nnπ2L)sin(Lnπx)
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments