It follows from first principles that the derivative of a function f(x) is
f′(x)=h→0limhf(x+h)−f(x)
In our case, for f(x)=1
f′(x)=h→0limhf(x+h)−f(x)=h→0limh(1)−1==h→0lim(h0)=0→f(x)=1→f′(x)=0
For f(x)=x+1
f′(x)=h→0limhf(x+h)−f(x)=h→0limhx+1+h−x+1==h→0limh(x+1+h+x+1)(x+1+h−x+1)(x+1+h+x+1)==h→0limh(x+1+h+x+1)(x+1+h)−(x+1)==h→0limh(x+1+h+x+1)h==h→0lim(x+1+h+x+1)1=2x+11f(x)=x+1→f′(x)=2x+11
Comments