It follows from first principles that the derivative of a function "f(x)" is
"f'(x)=\\lim\\limits_{h\\to0}\\frac{f(x+h)-f(x)}{h}"
In our case, for "f(x)=1"
"f'(x)=\\lim\\limits_{h\\to0}\\frac{f(x+h)-f(x)}{h}=\\lim\\limits_{h\\to0}\\frac{(1)-1}{h}=\\\\[0.3cm]\n=\\lim\\limits_{h\\to0}\\left(\\frac{0}{h}\\right)=0\\to\\boxed{f(x)=1\\to f'(x)=0}"
For "f(x)=\\sqrt{x+1}"
"f'(x)=\\lim\\limits_{h\\to0}\\frac{f(x+h)-f(x)}{h}=\\lim\\limits_{h\\to0}\\frac{\\sqrt{x+1+h}-\\sqrt{x+1}}{h}=\\\\[0.3cm]\n=\\lim\\limits_{h\\to0}\\frac{\\left(\\sqrt{x+1+h}-\\sqrt{x+1}\\right)\\left(\\sqrt{x+1+h}+\\sqrt{x+1}\\right)}{h\\left(\\sqrt{x+1+h}+\\sqrt{x+1}\\right)}=\\\\[0.3cm]\n=\\lim\\limits_{h\\to0}\\frac{\\left(x+1+h\\right)-\\left(x+1\\right)}{h\\left(\\sqrt{x+1+h}+\\sqrt{x+1}\\right)}=\\\\[0.3cm]\n=\\lim\\limits_{h\\to0}\\frac{h}{h\\left(\\sqrt{x+1+h}+\\sqrt{x+1}\\right)}=\\\\[0.3cm]\n=\\lim\\limits_{h\\to0}\\frac{1}{\\left(\\sqrt{x+1+h}+\\sqrt{x+1}\\right)}=\\frac{1}{2\\sqrt{x+1}}\\\\[0.3cm]\n\\boxed{f(x)=\\sqrt{x+1}\\to f'(x)=\\frac{1}{2\\sqrt{x+1}}}"
Comments
Leave a comment