Answer to Question #128705 in Calculus for Onyinye

Question #128705
Using the first principle, find the derivative of the function f (x) = 1 . (Show all workings and √x+1
state clearly, any theorem used)
1
Expert's answer
2020-08-06T17:53:31-0400

It follows from first principles that the derivative of a function "f(x)" is



"f'(x)=\\lim\\limits_{h\\to0}\\frac{f(x+h)-f(x)}{h}"

In our case, for "f(x)=1"



"f'(x)=\\lim\\limits_{h\\to0}\\frac{f(x+h)-f(x)}{h}=\\lim\\limits_{h\\to0}\\frac{(1)-1}{h}=\\\\[0.3cm]\n=\\lim\\limits_{h\\to0}\\left(\\frac{0}{h}\\right)=0\\to\\boxed{f(x)=1\\to f'(x)=0}"

For "f(x)=\\sqrt{x+1}"



"f'(x)=\\lim\\limits_{h\\to0}\\frac{f(x+h)-f(x)}{h}=\\lim\\limits_{h\\to0}\\frac{\\sqrt{x+1+h}-\\sqrt{x+1}}{h}=\\\\[0.3cm]\n=\\lim\\limits_{h\\to0}\\frac{\\left(\\sqrt{x+1+h}-\\sqrt{x+1}\\right)\\left(\\sqrt{x+1+h}+\\sqrt{x+1}\\right)}{h\\left(\\sqrt{x+1+h}+\\sqrt{x+1}\\right)}=\\\\[0.3cm]\n=\\lim\\limits_{h\\to0}\\frac{\\left(x+1+h\\right)-\\left(x+1\\right)}{h\\left(\\sqrt{x+1+h}+\\sqrt{x+1}\\right)}=\\\\[0.3cm]\n=\\lim\\limits_{h\\to0}\\frac{h}{h\\left(\\sqrt{x+1+h}+\\sqrt{x+1}\\right)}=\\\\[0.3cm]\n=\\lim\\limits_{h\\to0}\\frac{1}{\\left(\\sqrt{x+1+h}+\\sqrt{x+1}\\right)}=\\frac{1}{2\\sqrt{x+1}}\\\\[0.3cm]\n\\boxed{f(x)=\\sqrt{x+1}\\to f'(x)=\\frac{1}{2\\sqrt{x+1}}}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS