Question #128705
Using the first principle, find the derivative of the function f (x) = 1 . (Show all workings and √x+1
state clearly, any theorem used)
1
Expert's answer
2020-08-06T17:53:31-0400

It follows from first principles that the derivative of a function f(x)f(x) is



f(x)=limh0f(x+h)f(x)hf'(x)=\lim\limits_{h\to0}\frac{f(x+h)-f(x)}{h}

In our case, for f(x)=1f(x)=1



f(x)=limh0f(x+h)f(x)h=limh0(1)1h==limh0(0h)=0f(x)=1f(x)=0f'(x)=\lim\limits_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim\limits_{h\to0}\frac{(1)-1}{h}=\\[0.3cm] =\lim\limits_{h\to0}\left(\frac{0}{h}\right)=0\to\boxed{f(x)=1\to f'(x)=0}

For f(x)=x+1f(x)=\sqrt{x+1}



f(x)=limh0f(x+h)f(x)h=limh0x+1+hx+1h==limh0(x+1+hx+1)(x+1+h+x+1)h(x+1+h+x+1)==limh0(x+1+h)(x+1)h(x+1+h+x+1)==limh0hh(x+1+h+x+1)==limh01(x+1+h+x+1)=12x+1f(x)=x+1f(x)=12x+1f'(x)=\lim\limits_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim\limits_{h\to0}\frac{\sqrt{x+1+h}-\sqrt{x+1}}{h}=\\[0.3cm] =\lim\limits_{h\to0}\frac{\left(\sqrt{x+1+h}-\sqrt{x+1}\right)\left(\sqrt{x+1+h}+\sqrt{x+1}\right)}{h\left(\sqrt{x+1+h}+\sqrt{x+1}\right)}=\\[0.3cm] =\lim\limits_{h\to0}\frac{\left(x+1+h\right)-\left(x+1\right)}{h\left(\sqrt{x+1+h}+\sqrt{x+1}\right)}=\\[0.3cm] =\lim\limits_{h\to0}\frac{h}{h\left(\sqrt{x+1+h}+\sqrt{x+1}\right)}=\\[0.3cm] =\lim\limits_{h\to0}\frac{1}{\left(\sqrt{x+1+h}+\sqrt{x+1}\right)}=\frac{1}{2\sqrt{x+1}}\\[0.3cm] \boxed{f(x)=\sqrt{x+1}\to f'(x)=\frac{1}{2\sqrt{x+1}}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS