Answer to Question #117910 in Calculus for Olivia

Question #117910
Let f(x,y)=x^3+y^3−12xy, then, Select one:
a. f has a local maximum at (4,4)

b. f has a local minimum at (0,0)

c. f has a saddle at (0,0)

d. f has a saddle at (4,4)
1
Expert's answer
2020-05-25T20:29:56-0400

Since f(x,y)=x3+y312xy,we havefx=fx=3x212y,fy=fy=3y212x,fxx=2fx2=6x,fyy=2fy2=6y,fxy=2fyx=12,andfyx=12.Putting fx=fy=0,we obtain the critical pointsx=0,y=0 and x=4,y=4at (x,y)=(0,0),we getfxxfyyfxy2=0144=144<0.This implies thatf has a saddle at (0,0).So, the correct answer is  cSince\ f(x,y)=x^3+y^3-12xy, \text{we have}\\ f_x=\frac{\partial f}{\partial x}=3x^2-12y,\\ f_y=\frac{\partial f}{\partial y}=3y^2-12x,\\ f_{xx}=\frac{\partial^2 f}{\partial x^2}=6x,\\ f_{yy}=\frac{\partial^2 f}{\partial y^2}=6y,\\ f_{xy}=\frac{\partial^2 f}{\partial y\partial x}=-12,\\ and\\ f_{yx}=-12.\\ Putting \ f_{x}=f_{y}=0, \\ \text{we obtain the critical points}\\ x=0,y =0 \ and\ x=4,y =4\\ at \ (x,y)=(0,0), \text{we get}\\ f_{xx} f_{yy}-f_{xy}^2=0-144=-144<0.\\ \text{This implies that} \\ f \ \text{has a saddle at } (0,0).\\ \text{So, the correct answer is}\ \ c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment