Question #117634
Evaluate the following limit:
limt→1−t2−|t−1|−1|t−1|.
1
Expert's answer
2020-05-26T20:01:23-0400
limt1(t2t11t1)\lim\limits_{t\to1}(-{t^2-|t-1|-1\over |t-1|})

limt1+(t2t11t1)=limt1+(t2t+11t1)=\lim\limits_{t\to1^+}(-{t^2-|t-1|-1\over |t-1|})=\lim\limits_{t\to1^+}(-{t^2-t+1-1\over t-1})=

=limt1+(t(t1)t1)=limt1+t=1=\lim\limits_{t\to1^+}(-{t(t-1)\over t-1})=-\lim\limits_{t\to1^+}t=-1


limt1(t2t11t1)=limt1(t2+t11t1)=\lim\limits_{t\to1^-}(-{t^2-|t-1|-1\over |t-1|})=\lim\limits_{t\to1^-}({t^2+t-1-1\over t-1})=

=limt1(t+2)(t1)t1=limt1(t+2)=3=\lim\limits_{t\to1^-}{(t+2)(t-1)\over t-1}=\lim\limits_{t\to1^-}(t+2)=3

limt1+(t2t11t1)=13=limt1(t2t11t1)\lim\limits_{t\to1^+}(-{t^2-|t-1|-1\over |t-1|})=-1\not=3=\lim\limits_{t\to1^-}(-{t^2-|t-1|-1\over |t-1|})

Therefore


limt1(t2t11t1)\lim\limits_{t\to1}(-{t^2-|t-1|-1\over |t-1|})

does not exist.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS