Question #117679
Given that d/dx(xlnx−x)=lnx, find the volume of the solid obtained by rotating, about the x-axis, the graph of the function y=√(lnx) from the x-intercept and x=e^2.
1
Expert's answer
2020-05-25T20:47:52-0400

Since ddx(xlnxx)=lnx,\frac{d}{dx}(xlnx-x)=lnx, then lnxdx=xlnxx+C\int lnx dx= xlnx-x+C

Volume of the solid obtained by rotating can be found by formula: πy2dx\pi \int y^2dx



Boundaries of integration are x=1x=1 and x=e2x=e^2.

So:

V=π1e2(lnx)2dx=π1e2lnxdx=π(xlnxx)1e2=π(e2lne2e2)π(1ln11)=π(e2+1)V=\pi \int\limits_1^{e^2} (\sqrt{lnx})^2dx=\pi\int\limits_1^{e^2}lnxdx=\pi (xlnx-x)\bigg|_1^{e^2}=\\ \pi(e^2lne^2-e^2)-\pi(1ln1-1)=\pi(e^2+1)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS