We have given the parametric curve (vector valued) function as
r ( t ) = < 2 sin ( 3 t ) , 4 t , 2 cos ( 3 t ) > r(t)=\big<2\sin(3t),\sqrt{4t},2\cos(3t)\big> r ( t ) = ⟨ 2 sin ( 3 t ) , 4 t , 2 cos ( 3 t ) ⟩ Since, we know that tangent vector to r ( t ) r(t) r ( t ) is given
d r ( t ) d t = r ′ ( t ) \frac{dr(t)}{dt}=r'(t) d t d r ( t ) = r ′ ( t ) Thus,
r ′ ( t ) = < d ( 2 sin ( 3 t ) ) d t , d ( 4 t ) d t , d ( 2 cos ( 3 t ) ) d t > ⟹ r ′ ( t ) = < 6 cos ( 3 t ) , 1 t , − 6 sin ( 3 t ) > r'(t)=\big<\frac{d(2\sin(3t))}{dt},\frac{d(\sqrt{4t})}{dt},\frac{d(2\cos(3t))}{dt}\big>\\
\implies r'(t)=\big<6\cos(3t),\frac{1}{\sqrt{t}},-6\sin(3t)\big> r ′ ( t ) = ⟨ d t d ( 2 sin ( 3 t )) , d t d ( 4 t ) , d t d ( 2 cos ( 3 t )) ⟩ ⟹ r ′ ( t ) = ⟨ 6 cos ( 3 t ) , t 1 , − 6 sin ( 3 t ) ⟩ We also know that, unit vector for any vector v v v is
v ^ = v ∣ ∣ v ∣ ∣ \hat{v}=\frac{v}{||v||} v ^ = ∣∣ v ∣∣ v where, ∣ ∣ v ∣ ∣ ||v|| ∣∣ v ∣∣ is the norm of v v v . Hence norm of tangent vector of r ( t ) r(t) r ( t ) will be
∣ ∣ r ′ ( t ) ∣ ∣ = ( 6 sin ( 3 t ) ) 2 + ( 1 t ) 2 + ( − 6 cos ( 3 t ) ) 2 ⟹ ∣ ∣ r ′ ( t ) ∣ ∣ = 36 + 1 t ||r'(t)||=\sqrt{(6\sin(3t))^2+(\frac{1}{\sqrt{t}})^2+(-6\cos(3t))^2}
\\
\implies ||r'(t)||=\sqrt{36+\frac{1}{t}} ∣∣ r ′ ( t ) ∣∣ = ( 6 sin ( 3 t ) ) 2 + ( t 1 ) 2 + ( − 6 cos ( 3 t ) ) 2 ⟹ ∣∣ r ′ ( t ) ∣∣ = 36 + t 1 Therefore,
r ′ ( t ) ^ = r ′ ( t ) ∣ ∣ r ′ ( t ) ∣ ∣ ⟹ r ′ ( t ) ^ = < 6 cos ( 3 t ) 36 + 1 t , 1 t 36 + 1 t , − 6 sin ( 3 t ) 36 + 1 t > ⟹ r ′ ( t ) ^ = < 6 cos ( 3 t ) 36 + 1 t , 1 36 t + 1 , − 6 sin ( 3 t ) 36 + 1 t > \widehat{r'(t)}=\frac{r'(t)}{||r'(t)||}\\
\implies \widehat{r'(t)}=\big<\frac{6\cos(3t)}{\sqrt{36+\frac{1}{t}}},\frac{1}{\sqrt{t}\sqrt{36+\frac{1}{t}}},\frac{-6\sin(3t)}{\sqrt{36+\frac{1}{t}}}\big>\\
\implies \widehat{r'(t)}=\big<\frac{6\cos(3t)}{\sqrt{36+\frac{1}{t}}},\frac{1}{\sqrt{36t+1}},\frac{-6\sin(3t)}{\sqrt{36+\frac{1}{t}}}\big> r ′ ( t ) = ∣∣ r ′ ( t ) ∣∣ r ′ ( t ) ⟹ r ′ ( t ) = ⟨ 36 + t 1 6 cos ( 3 t ) , t 36 + t 1 1 , 36 + t 1 − 6 sin ( 3 t ) ⟩ ⟹ r ′ ( t ) = ⟨ 36 + t 1 6 cos ( 3 t ) , 36 t + 1 1 , 36 + t 1 − 6 sin ( 3 t ) ⟩ Hence the required unit vector is
< 6 cos ( 3 t ) 36 + 1 t , 1 36 t + 1 , − 6 sin ( 3 t ) 36 + 1 t > \big<\frac{6\cos(3t)}{\sqrt{36+\frac{1}{t}}},\frac{1}{\sqrt{36t+1}},\frac{-6\sin(3t)}{\sqrt{36+\frac{1}{t}}}\big> ⟨ 36 + t 1 6 cos ( 3 t ) , 36 t + 1 1 , 36 + t 1 − 6 sin ( 3 t ) ⟩ We are done.
Comments