Let S be a solid and suppose that the area of the cross section in the plane perpendicular to the
x−axis is A(x) for a≤x≤b.
V=∫abA(x)dx
V=∫01/21−4x22dx=∫01/241−x21dx Trigonometric substitution
x=21sint,−2π≤t≤2π
dx=21cost dt
41−x2=21cost
∫41−x21dx=∫21cost21costdt=t+C=arcsin(2x)+C
V=∫01/21−4x22dx=∫01/241−x21dx=
=[arcsin(2x)]1/20=2π−0=2π(units3)
V=2π cubic units
Comments
Leave a comment