Answer to Question #117677 in Calculus for Lizwi

Question #117677
Find the volume of the solid with cross-sectional area 2/√(1−4x^2) lying between x=0 and x=12
1
Expert's answer
2020-05-24T17:13:10-0400

Let SS be a solid and suppose that the area of the cross section in the plane perpendicular to the

 xx-axis is A(x)A(x) for axb.a\leq x\leq b.


V=abA(x)dxV=\displaystyle\int_{a}^bA(x)dx

V=01/2214x2dx=01/2114x2dxV=\displaystyle\int_{0}^{1/2}{2\over \sqrt{1-4x^2}}dx=\displaystyle\int_{0}^{1/2}{1\over \sqrt{{1 \over 4}-x^2}}dx

Trigonometric substitution


x=12sint,π2tπ2x=\dfrac{1}{2}\sin t, -\dfrac{\pi}{2}\leq t\leq \dfrac{\pi}{2}


dx=12cost dtdx=\dfrac{1}{2}\cos t\ dt


14x2=12cost\sqrt{{1 \over 4}-x^2}=\dfrac{1}{2}\cos t


114x2dx=12cost12costdt=t+C=arcsin(2x)+C\int{1\over \sqrt{{1 \over 4}-x^2}}dx=\int{\dfrac{1}{2}\cos t\over \dfrac{1}{2}\cos t}dt=t+C=\arcsin(2x)+C

V=01/2214x2dx=01/2114x2dx=V=\displaystyle\int_{0}^{1/2}{2\over \sqrt{1-4x^2}}dx=\displaystyle\int_{0}^{1/2}{1\over \sqrt{{1 \over 4}-x^2}}dx=

=[arcsin(2x)]1/20=π20=π2(units3)=[\arcsin(2x)]\begin{matrix} 1/2 \\ 0 \end{matrix}={\pi \over 2}-0={\pi \over 2} (units^3)

V=π2 cubic unitsV={\pi \over 2}\ cubic\ units


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment