Area=∫ln(2)1(−ln(y)−ln(y))dy =−2∫ln(2)1ln(y)dy =−2y(ln(y)−1)∣ln(2)1 =−2(ln(1)−1)+2ln(2)(ln(ln(2))−1) =2+2ln(2)(ln(ln(2))−1)Area=\int_{ln(2)}^1(-ln(y)-ln(y))dy\\ \ \qquad \ = -2\int_{ln(2)}^1ln(y)dy\\ \ \qquad \ = -2y (ln(y)-1)|_{ln(2)}^1\\ \ \qquad \ = -2(ln(1)-1)+2ln(2)(ln(ln(2))-1)\\ \ \qquad \ = 2+2ln(2)(ln(ln(2))-1)\\Area=∫ln(2)1(−ln(y)−ln(y))dy =−2∫ln(2)1ln(y)dy =−2y(ln(y)−1)∣ln(2)1 =−2(ln(1)−1)+2ln(2)(ln(ln(2))−1) =2+2ln(2)(ln(ln(2))−1)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments