Question #114434
Check whether the limit of the function 6 2
3
2
3
( , )
x y
x y
f x y
+
= exists as )0,0(
1
Expert's answer
2020-05-07T19:19:10-0400

Consider


lim(x,y)(0,0)6x2y3x2+y3\lim\limits_{(x,y)\to(0,0)}{6x^2y^3 \over x^2+y^3}

Suppose ε>0\varepsilon>0


6x2y3x2+y3=6y3x2+y3x2\bigg|{6x^2y^3 \over x^2+y^3}\bigg|=6\bigg|{y^3 \over x^2+y^3}\bigg|x^2

Note that


y3x2+y31,x2x2+y2=δ2\bigg|{y^3 \over x^2+y^3}\bigg|\leq1, x^2\leq x^2+y^2=\delta^2

So


6y3x2+y3x2<61δ26\bigg|{y^3 \over x^2+y^3}\bigg|x^2<6\cdot1\cdot\delta^2

If we choose δ=ε6\delta=\sqrt{\dfrac{\varepsilon}{6}} then


6y3x2+y3x2<61δ2=ε6\bigg|{y^3 \over x^2+y^3}\bigg|x^2<6\cdot1\cdot\delta^2=\varepsilon

f(x,y)0<ε,if x2+y2<δ|f(x,y)-0|<\varepsilon, if\ \sqrt{x^2+y^2}<\delta

Hence


lim(x,y)(0,0)6x2y3x2+y3=0\lim\limits_{(x,y)\to(0,0)}{6x^2y^3 \over x^2+y^3}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS