Consider
"\\lim\\limits_{(x,y)\\to(0,0)}{6x^2y^3 \\over x^2+y^3}" Suppose "\\varepsilon>0"
"\\bigg|{6x^2y^3 \\over x^2+y^3}\\bigg|=6\\bigg|{y^3 \\over x^2+y^3}\\bigg|x^2" Note that
"\\bigg|{y^3 \\over x^2+y^3}\\bigg|\\leq1, x^2\\leq x^2+y^2=\\delta^2" So
"6\\bigg|{y^3 \\over x^2+y^3}\\bigg|x^2<6\\cdot1\\cdot\\delta^2" If we choose "\\delta=\\sqrt{\\dfrac{\\varepsilon}{6}}" then
"6\\bigg|{y^3 \\over x^2+y^3}\\bigg|x^2<6\\cdot1\\cdot\\delta^2=\\varepsilon"
"|f(x,y)-0|<\\varepsilon, if\\ \\sqrt{x^2+y^2}<\\delta" Hence
"\\lim\\limits_{(x,y)\\to(0,0)}{6x^2y^3 \\over x^2+y^3}=0"
Comments
Leave a comment