Let us use the Taylor expansion of function into series.
We know that for function f at point x we may write the formula
f(x)=f(x0)+1!f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+…+n!f(n)(x0)(x−x0)n+…
We should use only the first approximation, so we may write
f(x)≈f(x0)+1!f′(x0)(x−x0). (1)
We know that x0=0 . Next, we obtain the formula for the derivative of f
f′(x)=((1−x)100)′=−100(1−x)99=100(x−1)99 .
Therefore,
f′(x0)=f′(0)=100(0−1)99=−100.
Next we use (1) to write
f(x)≈f(x0)+1!f′(x0)(x−x0)=1+1!−100(x−0)=1−100x.
Comments