Quotient Rule: (uv)′=u′v−uv′v2(\frac{u}{v})'=\frac{u'v-uv'}{v^2}(vu)′=v2u′v−uv′
y=sin(t)ty=\frac{sin(t)}{t}y=tsin(t)
here u=sin(t)u=sin(t)u=sin(t) and v=tv=tv=t
u′=dudt=cos(t)u'=\frac{du}{dt}=cos(t)u′=dtdu=cos(t)
v′=dvdt=1v'=\frac{dv}{dt}=1v′=dtdv=1
So, dydt=cos(t)⋅t−sin(t)⋅1t2=t⋅cos(t)−sin(t)t2\frac{dy}{dt}=\frac{cos(t)\cdot t-sin(t)\cdot 1}{t^2}=\frac{t\cdot cos(t)-sin(t)}{t^2}dtdy=t2cos(t)⋅t−sin(t)⋅1=t2t⋅cos(t)−sin(t)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment