Let x=2cosφ and y=2sinφ, so we have s={(φ,z)∣0≤φ≤2π,0≤z≤3}
(xφ′,yφ′,zφ′)=(−2sinφ,2cosφ,0) and (xz′,yz′,zz′)=(0,0,1).
We have that normal to the cylinder is N=(xφ′,yφ′,zφ′)×(xz′,yz′,zz′)=
=(−2sinφ,2cosφ,0)×(0,0,1)=(2cosφ,2sinφ,0)
So s∬ads=s∬(a,N)dφdz=0∫30∫2π(a,N)dφdz
We have a=(4x,−2y2,z2)=(8cosφ,−8sin2φ,z2), so (a,N)=((8cosφ,−8sin2φ,z2),(2cosφ,2sinφ,0))=
=16cos2φ−16sin3φ
Since cos2φ=21+cos2φ and sin3φ=43sinφ−sin3φ, we have (a,N)=8+8cos2φ−12sinφ+4sin3φ
Then s∬ads=0∫30∫2π(a,N)dφdz=
0∫30∫2π(8+8cos2φ−12sinφ+4sin3φ)dφdz=
=0∫316πdz=48π
Comments