Let "x=2\\cos\\varphi" and "y=2\\sin\\varphi", so we have "s=\\{(\\varphi,z)|0\\le\\varphi\\le 2\\pi, 0\\le z\\le 3\\}"
"(x'_{\\varphi},y'_{\\varphi},z'_{\\varphi})=(-2sin\\varphi,2\\cos\\varphi,0)" and "(x'_z,y'_z,z'_z)=(0,0,1)".
We have that normal to the cylinder is "\\vec{N}=(x'_{\\varphi},y'_{\\varphi},z'_{\\varphi})\\times(x'_z,y'_z,z'_z)="
"=(-2sin\\varphi,2\\cos\\varphi,0)\\times(0,0,1)=(2\\cos\\varphi,2\\sin\\varphi,0)"
So "\\iint\\limits_s \\vec{a}d\\vec{s}=\\iint\\limits_s (\\vec{a},\\vec{N})d\\varphi dz=\\int\\limits_0^3\\int\\limits_0^{2\\pi}(\\vec{a},\\vec{N})d\\varphi dz"
We have "\\vec{a}=(4x,-2y^2,z^2)=(8\\cos\\varphi,-8\\sin^2\\varphi,z^2)", so "(\\vec{a},\\vec{N})=((8\\cos\\varphi,-8\\sin^2\\varphi,z^2),(2\\cos\\varphi,2\\sin\\varphi,0))="
"=16\\cos^2\\varphi-16\\sin^3\\varphi"
Since "\\cos^2\\varphi=\\frac{1+\\cos 2\\varphi}{2}" and "\\sin^3\\varphi=\\frac{3\\sin\\varphi-\\sin 3\\varphi}{4}", we have "(\\vec{a},\\vec{N})=8+8\\cos 2\\varphi-12\\sin\\varphi+4\\sin 3\\varphi"
Then "\\iint\\limits_s \\vec{a}d\\vec{s}=\\int\\limits_0^3\\int\\limits_0^{2\\pi}(\\vec{a},\\vec{N})d\\varphi dz="
"\\int\\limits_0^3\\int\\limits_0^{2\\pi}(8+8\\cos 2\\varphi-12\\sin\\varphi+4\\sin 3\\varphi)d\\varphi dz="
"=\\int\\limits_0^316\\pi dz=48\\pi"
Comments
Leave a comment