Question #114126
show that surface a integral =48pi where a=4xi-2y^2j+z^2k and s is curved surface of cylinder x^2+y^2=4 bounded by plane z=0 to 3
1
Expert's answer
2020-05-07T15:48:36-0400

Let x=2cosφx=2\cos\varphi and y=2sinφy=2\sin\varphi, so we have s={(φ,z)0φ2π,0z3}s=\{(\varphi,z)|0\le\varphi\le 2\pi, 0\le z\le 3\}

(xφ,yφ,zφ)=(2sinφ,2cosφ,0)(x'_{\varphi},y'_{\varphi},z'_{\varphi})=(-2sin\varphi,2\cos\varphi,0) and (xz,yz,zz)=(0,0,1)(x'_z,y'_z,z'_z)=(0,0,1).

We have that normal to the cylinder is N=(xφ,yφ,zφ)×(xz,yz,zz)=\vec{N}=(x'_{\varphi},y'_{\varphi},z'_{\varphi})\times(x'_z,y'_z,z'_z)=

=(2sinφ,2cosφ,0)×(0,0,1)=(2cosφ,2sinφ,0)=(-2sin\varphi,2\cos\varphi,0)\times(0,0,1)=(2\cos\varphi,2\sin\varphi,0)

So sads=s(a,N)dφdz=0302π(a,N)dφdz\iint\limits_s \vec{a}d\vec{s}=\iint\limits_s (\vec{a},\vec{N})d\varphi dz=\int\limits_0^3\int\limits_0^{2\pi}(\vec{a},\vec{N})d\varphi dz

We have a=(4x,2y2,z2)=(8cosφ,8sin2φ,z2)\vec{a}=(4x,-2y^2,z^2)=(8\cos\varphi,-8\sin^2\varphi,z^2), so (a,N)=((8cosφ,8sin2φ,z2),(2cosφ,2sinφ,0))=(\vec{a},\vec{N})=((8\cos\varphi,-8\sin^2\varphi,z^2),(2\cos\varphi,2\sin\varphi,0))=

=16cos2φ16sin3φ=16\cos^2\varphi-16\sin^3\varphi

Since cos2φ=1+cos2φ2\cos^2\varphi=\frac{1+\cos 2\varphi}{2} and sin3φ=3sinφsin3φ4\sin^3\varphi=\frac{3\sin\varphi-\sin 3\varphi}{4}, we have (a,N)=8+8cos2φ12sinφ+4sin3φ(\vec{a},\vec{N})=8+8\cos 2\varphi-12\sin\varphi+4\sin 3\varphi

Then sads=0302π(a,N)dφdz=\iint\limits_s \vec{a}d\vec{s}=\int\limits_0^3\int\limits_0^{2\pi}(\vec{a},\vec{N})d\varphi dz=

0302π(8+8cos2φ12sinφ+4sin3φ)dφdz=\int\limits_0^3\int\limits_0^{2\pi}(8+8\cos 2\varphi-12\sin\varphi+4\sin 3\varphi)d\varphi dz=

=0316πdz=48π=\int\limits_0^316\pi dz=48\pi


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS