For hemisphere ϕ∈[0,π], θ∈[0,π], ρ=r∈[0,R]\phi\in[0,\pi],\,\,\theta\in[0,\pi],\,\,\rho=r\in[0,R]ϕ∈[0,π],θ∈[0,π],ρ=r∈[0,R]
The Jacobian for spherical coordinates is given by J=r2sinθJ=r^2\sin\thetaJ=r2sinθ
V=∫0π∫0π∫0Rr2sinθ dr dθ dϕ=πR33∫0πsinθ dθ=23πR3V=\int\limits_0^\pi \int\limits_0^\pi \int\limits_0^R r^2\sin\theta\,dr\,d\theta\,d\phi=\frac{\pi R^3}{3}\int\limits_0^\pi \sin\theta\,d\theta=\frac{2}{3}\pi R^3V=0∫π0∫π0∫Rr2sinθdrdθdϕ=3πR30∫πsinθdθ=32πR3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments