ϕ(u)=−50x2/5y1/5z1/5minϕ(u)g0(u)=80x+12y+10z−24000g0(u)≤0g1(u)=−xg1(u)<0g2(u)=−yg2(u)<0g3(u)=−zg3(u)<0u=(x,y,z)∈R3
∂u∂g0T(u)=(80 12 10)∂u∂g1T(u)=(−1 0 0)∂u∂g2T(u)=(0 −1 0)∂u∂g3T(u)=(0 0 −1)
Only g0 may be active.
g0=0
Hence each acceptable point is ordinary.
We will build normal (classical) Lagrange function:
L(x,λ)=ϕ(u)+λ0g0(u)+λ1g1(u)+λ2g2(u)+λ3g3(u)=−50x2/5y1/5z1/5+λ0(80x+12y++10z−24000)−λ1x−λ2y−λ3z.
Due to necessary condition there exist λ0,λ1,λ2,λ3 (λi≥0) such that:
∂x∂L(u,λ)=−20x−3/5y1/5z1/5+80λ0−λ1=0∂y∂L(u,λ)=−10x2/5y−4/5z1/5+12λ0−λ2=0∂z∂L(u,λ)=−10x2/5y1/5z−4/5+10λ0−λ3=0λ0(80x+12y+10z−24000)=0λ1=λ2=λ3=0.
We have the system of equations:
−20x−3/5y1/5z1/5+80λ0=0−10x2/5y−4/5z1/5+12λ0=0−10x2/5y1/5z−4/5+10λ0=0λ0(80x+12y+10z−24000)=0
Using CoCalc (Sage) we find the solution of this system:
u0=(x0,y0,z0)x0=150,y0=500,z0=600.
Next we will check sufficient condition.
∂u2∂2L(u0,λ∗) will be a matrix of positive elements aij with 3 columns and 3 rows.
I=uT∂u2∂2L(u0,λ∗)uuT=(x y z)I=a11x2+2a12xy+2a13xz++a22y2+2a23yz+a33z2∂u∂g0T(u0)u=0(80 12 10)(x y z)T=080x+12y+10z=0 — our hyperplane.I>0 on this hyperplane.
So we have x=150,y=500,z=600.
Comments
Leave a comment