"\\phi(u)=-50x^{2\/5}y^{1\/5}z^{1\/5}\\\\\n\\min \\phi(u)\\\\\ng_0(u)=80x+12y+10z-24000\\\\\ng_0(u)\\leq 0\\\\\ng_1(u)=-x\\\\\ng_1(u)<0\\\\\ng_2(u)=-y\\\\\ng_2(u)<0\\\\\ng_3(u)=-z\\\\\ng_3(u)<0\\\\\nu=(x,y,z)\\in \\mathbb{R^3}"
"\\frac{\\partial g_0^T(u)}{\\partial u}=(80\\ 12\\ 10)\\\\\n\\frac{\\partial g_1^T(u)}{\\partial u}=(-1\\ 0\\ 0)\\\\\n\\frac{\\partial g_2^T(u)}{\\partial u}=(0\\ -1\\ 0)\\\\\n\\frac{\\partial g_3^T(u)}{\\partial u}=(0\\ 0\\ -1)\\\\"
Only "g_0" may be active.
"g_0\\neq 0"
Hence each acceptable point is ordinary.
We will build normal (classical) Lagrange function:
"L(x,\\lambda)=\\phi(u)+\\lambda_0 g_0(u)+\\lambda_1 g_1(u)+\\lambda_2 g_2(u)\\\\\n+\\lambda_3 g_3(u)=-50x^{2\/5}y^{1\/5}z^{1\/5}+\\lambda_0(80x+12y+\\\\\n+10z-24000)-\\lambda_1x-\\lambda_2y-\\lambda_3z."
Due to necessary condition there exist "\\lambda_0,\\lambda_1,\\lambda_2,\\lambda_3\\ (\\lambda_i\\geq 0)" such that:
"\\frac{\\partial L(u,\\lambda)}{\\partial x}=-20x^{-3\/5}y^{1\/5}z^{1\/5}+80\\lambda_0-\\lambda_1=0\\\\\n\\frac{\\partial L(u,\\lambda)}{\\partial y}=-10x^{2\/5}y^{-4\/5}z^{1\/5}+12\\lambda_0-\\lambda_2=0\\\\\n\\frac{\\partial L(u,\\lambda)}{\\partial z}=-10x^{2\/5}y^{1\/5}z^{-4\/5}+10\\lambda_0-\\lambda_3=0\\\\\n\\lambda_0(80x+12y+10z-24000)=0\\\\\n\\lambda_1=\\lambda_2=\\lambda_3=0."
We have the system of equations:
"-20x^{-3\/5}y^{1\/5}z^{1\/5}+80\\lambda_0=0\\\\\n-10x^{2\/5}y^{-4\/5}z^{1\/5}+12\\lambda_0=0\\\\\n-10x^{2\/5}y^{1\/5}z^{-4\/5}+10\\lambda_0=0\\\\\n\\lambda_0(80x+12y+10z-24000)=0"
Using CoCalc (Sage) we find the solution of this system:
"u_0=(x_0,y_0,z_0)\\\\\nx_0=150, y_0=500, z_0=600."
Next we will check sufficient condition.
"\\frac{\\partial^2 L(u_0, \\lambda^*)}{\\partial u^2}" will be a matrix of positive elements "a_{ij}" with 3 columns and 3 rows.
"I=u^T \\frac{\\partial^2 L(u_0, \\lambda^*)}{\\partial u^2}u\\\\\nu^T=(x\\ y\\ z)\\\\\nI=a_{11}x^2+2a_{12}xy+2a_{13}xz+\\\\\n+a_{22}y^2+2a_{23}yz+a_{33}z^2\\\\\n\\frac{\\partial g_0^T(u_0)}{\\partial u}u=0\\\\\n(80\\ 12\\ 10)(x\\ y\\ z)^T=0\\\\\n80x+12y+10z=0\\text{ --- our hyperplane}.\\\\\nI>0 \\text{ on this hyperplane}."
So we have "x=150, y=500, z=600."
Comments
Leave a comment