Answer to Question #113785 in Calculus for Naim

Question #113785
A certain company manufactures a certain product, P , from three raw materials, combined according to a production function given by
2/5 1/5 1/5 P=50x y z .
Since the budget available for the purchase of the three raw materials of 24000 euros and knowing that they cost for unit 80, 12 and 10 euros, respectively, for x, y and z, what combination should you have regarding the purchase of products x, y and z, in order to maximize production?
1
Expert's answer
2020-05-10T12:16:08-0400

ϕ(u)=50x2/5y1/5z1/5minϕ(u)g0(u)=80x+12y+10z24000g0(u)0g1(u)=xg1(u)<0g2(u)=yg2(u)<0g3(u)=zg3(u)<0u=(x,y,z)R3\phi(u)=-50x^{2/5}y^{1/5}z^{1/5}\\ \min \phi(u)\\ g_0(u)=80x+12y+10z-24000\\ g_0(u)\leq 0\\ g_1(u)=-x\\ g_1(u)<0\\ g_2(u)=-y\\ g_2(u)<0\\ g_3(u)=-z\\ g_3(u)<0\\ u=(x,y,z)\in \mathbb{R^3}

g0T(u)u=(80 12 10)g1T(u)u=(1 0 0)g2T(u)u=(0 1 0)g3T(u)u=(0 0 1)\frac{\partial g_0^T(u)}{\partial u}=(80\ 12\ 10)\\ \frac{\partial g_1^T(u)}{\partial u}=(-1\ 0\ 0)\\ \frac{\partial g_2^T(u)}{\partial u}=(0\ -1\ 0)\\ \frac{\partial g_3^T(u)}{\partial u}=(0\ 0\ -1)\\

Only g0g_0 may be active.

g00g_0\neq 0

Hence each acceptable point is ordinary.

We will build normal (classical) Lagrange function:

L(x,λ)=ϕ(u)+λ0g0(u)+λ1g1(u)+λ2g2(u)+λ3g3(u)=50x2/5y1/5z1/5+λ0(80x+12y++10z24000)λ1xλ2yλ3z.L(x,\lambda)=\phi(u)+\lambda_0 g_0(u)+\lambda_1 g_1(u)+\lambda_2 g_2(u)\\ +\lambda_3 g_3(u)=-50x^{2/5}y^{1/5}z^{1/5}+\lambda_0(80x+12y+\\ +10z-24000)-\lambda_1x-\lambda_2y-\lambda_3z.

Due to necessary condition there exist λ0,λ1,λ2,λ3 (λi0)\lambda_0,\lambda_1,\lambda_2,\lambda_3\ (\lambda_i\geq 0) such that:

L(u,λ)x=20x3/5y1/5z1/5+80λ0λ1=0L(u,λ)y=10x2/5y4/5z1/5+12λ0λ2=0L(u,λ)z=10x2/5y1/5z4/5+10λ0λ3=0λ0(80x+12y+10z24000)=0λ1=λ2=λ3=0.\frac{\partial L(u,\lambda)}{\partial x}=-20x^{-3/5}y^{1/5}z^{1/5}+80\lambda_0-\lambda_1=0\\ \frac{\partial L(u,\lambda)}{\partial y}=-10x^{2/5}y^{-4/5}z^{1/5}+12\lambda_0-\lambda_2=0\\ \frac{\partial L(u,\lambda)}{\partial z}=-10x^{2/5}y^{1/5}z^{-4/5}+10\lambda_0-\lambda_3=0\\ \lambda_0(80x+12y+10z-24000)=0\\ \lambda_1=\lambda_2=\lambda_3=0.

We have the system of equations:

20x3/5y1/5z1/5+80λ0=010x2/5y4/5z1/5+12λ0=010x2/5y1/5z4/5+10λ0=0λ0(80x+12y+10z24000)=0-20x^{-3/5}y^{1/5}z^{1/5}+80\lambda_0=0\\ -10x^{2/5}y^{-4/5}z^{1/5}+12\lambda_0=0\\ -10x^{2/5}y^{1/5}z^{-4/5}+10\lambda_0=0\\ \lambda_0(80x+12y+10z-24000)=0

Using CoCalc (Sage) we find the solution of this system:


u0=(x0,y0,z0)x0=150,y0=500,z0=600.u_0=(x_0,y_0,z_0)\\ x_0=150, y_0=500, z_0=600.

Next we will check sufficient condition.

2L(u0,λ)u2\frac{\partial^2 L(u_0, \lambda^*)}{\partial u^2} will be a matrix of positive elements aija_{ij} with 3 columns and 3 rows.

I=uT2L(u0,λ)u2uuT=(x y z)I=a11x2+2a12xy+2a13xz++a22y2+2a23yz+a33z2g0T(u0)uu=0(80 12 10)(x y z)T=080x+12y+10z=0 — our hyperplane.I>0 on this hyperplane.I=u^T \frac{\partial^2 L(u_0, \lambda^*)}{\partial u^2}u\\ u^T=(x\ y\ z)\\ I=a_{11}x^2+2a_{12}xy+2a_{13}xz+\\ +a_{22}y^2+2a_{23}yz+a_{33}z^2\\ \frac{\partial g_0^T(u_0)}{\partial u}u=0\\ (80\ 12\ 10)(x\ y\ z)^T=0\\ 80x+12y+10z=0\text{ --- our hyperplane}.\\ I>0 \text{ on this hyperplane}.


So we have x=150,y=500,z=600.x=150, y=500, z=600.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment