Given, price function p(x)=580−10x and total cost C(x)=(30+5x)2=25x2+300x+900.
A) Revenue function R(x)=xp(x)=x(580−10x)=580x−10x2
Marginal Revenue = dxdR=580−20x
B) Total cost = Variable cost + Fixed cost =25x2+300x+900
Therefore, fixed cost = 900.
Marginal cost = dxdC=50x−300.
C) Profit function
P(x)=R(x)−C(x)=580x−10x2−25x2−300x−900P(x)=−35x2+280x−900
D) Now, P′(x)=0, gives
−70x+280=0⇒x=4.
Since dx2d2P=−70<0,x=4 maximizes the profit.
Comments