Given, price function "p(x)=580-10x" and total cost "C(x) = (30+5x)^2=25x^2+300x+900".
A) Revenue function "R(x) = xp(x) = x(580-10x) = 580x-10x^2"
Marginal Revenue = "\\dfrac{dR}{dx}=580-20x"
B) Total cost = Variable cost + Fixed cost "=25x^2+300x+900"
Therefore, fixed cost = 900.
Marginal cost = "\\dfrac{dC}{dx}=50x-300".
C) Profit function
"P(x)= R(x) - C(x) = 580x-10x^{2}-25x^{2}-300x-900\\\\\nP(x) = -35x^{2}+280x-900"
D) Now, "P'(x)=0", gives
"-70x+280 = 0 \\Rightarrow x = 4".
Since "\\dfrac{d^{2}P}{dx^{2}}=-70<0, x=4" maximizes the profit.
Comments
Leave a comment