I=∫a+xaa−xdx=a∫a+xa−xdx
Let
a+xa−x=t2a−x=t2(a+x)x=a⋅1+t21−t2dx=(t2+1)2−4atdt
I=−4a2∫(t2+1)2t2dt
Let
t=tanydt=cos2ydyI=−4a2∫(tan2y+1)2tan2ycos2ydy==−4a2∫sin2ydy=−2a2∫(1−cos2y)dy==−2a2(y−4sin2y)+C
y=arctant,t=a+xa−xy=arctana+xa−x
then
I=−2a2(arctana+xa−x−4sin(2arctana+xa−x))+C
Comments
Leave a comment