Answer to Question #113565 in Calculus for Sourav mondal

Question #113565
Integration of [(a√(a-x))/√(a+x)]
1
Expert's answer
2020-05-04T18:02:06-0400

I=aaxa+xdx=aaxa+xdxI=\int{\frac{a\sqrt{a-x}}{\sqrt{a+x}}}dx=a\int{\sqrt{\frac{a-x}{a+x}}}dx

Let

axa+x=t2ax=t2(a+x)x=a1t21+t2dx=4at(t2+1)2dt\frac{a-x}{a+x}=t^2\\ a-x=t^2(a+x)\\ x=a\cdot\frac{1-t^2}{1+t^2}\\ dx=\frac{-4at}{(t^2+1)^2}dt

I=4a2t2(t2+1)2dtI=-4a^2\int{\frac{t^2}{(t^2+1)^2}}dt

Let

t=tanydt=dycos2yI=4a2tan2y(tan2y+1)2dycos2y==4a2sin2ydy=2a2(1cos2y)dy==2a2(ysin2y4)+Ct=\tan y\\ dt=\frac{dy}{\cos^2y}\\ I=-4a^2\int{\frac{\tan^2y}{(\tan^2y+1)^2}\frac{dy}{\cos^2y}}=\\ =-4a^2\int{\sin^2ydy}=-2a^2\int{(1-\cos2y)dy}=\\ =-2a^2(y-\frac{\sin2y}{4})+C


y=arctant,t=axa+xy=arctanaxa+xy=\arctan t, t=\sqrt{\frac{a-x}{a+x}}\\ y=\arctan\sqrt{\frac{a-x}{a+x}}

then

I=2a2(arctanaxa+xsin(2arctanaxa+x)4)+CI=-2a^2(\arctan\sqrt{\frac{a-x}{a+x}}-\frac{\sin(2\arctan\sqrt{\frac{a-x}{a+x}})}{4})+C




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment