Question #113457
Find the volume of the solid generated by revolving the circle x^2 + y^2 = 4 about the line x = 3. Use the cylindrical shell method.


Note: With sketch please
1
Expert's answer
2020-05-06T19:28:34-0400

Consider x2+y2=4,y0.x^2+y^2=4, y\geq0. Then y=4x2y=\sqrt{4-x^2}

Figure shows the region and a cylindrical shell formed by rotation about the line x=3.x=3. It has radius 3x,3-x, circumference 2π(3x),2\pi(3-x), and height 4x2.\sqrt{4-x^2}.


The volume of the given solid is


V1=222π(3x)4x2dxV_1=\displaystyle\int_{-2}^22\pi(3-x)\sqrt{4-x^2}dx

x=2sint, π/2tπ/2x=2\sin{t},\ -\pi/2\leq t\leq \pi/2

 dx=2costdt\ dx=2\cos{t}dt

4x2=2cost\sqrt{4-x^2}=2\cos{t}


2π(3x)4x2dx=\int2\pi(3-x)\sqrt{4-x^2}dx=

=2π(32sint)(2cost)(2cost)dt==2\pi \int(3-2\sin{t})(2\cos{t})(2\cos{t})dt=

=24πcos2tdt16πsintcos2tdt==24\pi \int\cos^2{t}dt-16\pi\int\sin{t}\cos^2{t}dt=

=12π(1+cos2t)dt+16π(cos3t3)==12\pi \int(1+\cos{2t})dt+16\pi ({\cos^3{t} \over 3})=

=12πt+6πsin2t+16π3cos3t+C==12\pi t+6\pi \sin{2t}+{16\pi \over 3}\cos^3{t}+C=

=12πarcsin(x2)+3πx4x2+2π3(4x2)3/2+C=12\pi\arcsin{({x \over 2})}+3\pi x\sqrt{4-x^2}+{2\pi \over 3}(4-x^2)^{3/2}+C

V1=π[12arcsin(x2)+3x4x2+23(4x2)3/2]22=V_1=\pi\bigg[12\arcsin{({x \over 2})}+3x\sqrt{4-x^2}+{2\over 3}(4-x^2)^{3/2}\bigg]\begin{matrix} 2 \\ -2 \end{matrix}=

=π(12(π2)+0+012(π2)00)=12π2(units3)=\pi(12({\pi \over 2})+0+0-12(-{\pi \over 2})-0-0)=12\pi^2 (units^3)

V=2V1=2(12π2)=24π2(units3)V=2V_1=2(12\pi^2)=24\pi^2(units^3)

The volume of the solid generated by revolving the circle x2+y2=4x^2+y^2=4 about the line x=3x=3 is 24π224\pi^2 cubic units.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS