Consider x 2 + y 2 = 4 , y ≥ 0. x^2+y^2=4, y\geq0. x 2 + y 2 = 4 , y ≥ 0. Then y = 4 − x 2 y=\sqrt{4-x^2} y = 4 − x 2
Figure shows the region and a cylindrical shell formed by rotation about the line x = 3. x=3. x = 3. It has radius 3 − x , 3-x, 3 − x , circumference 2 π ( 3 − x ) , 2\pi(3-x), 2 π ( 3 − x ) , and height 4 − x 2 . \sqrt{4-x^2}. 4 − x 2 .
The volume of the given solid is
V 1 = ∫ − 2 2 2 π ( 3 − x ) 4 − x 2 d x V_1=\displaystyle\int_{-2}^22\pi(3-x)\sqrt{4-x^2}dx V 1 = ∫ − 2 2 2 π ( 3 − x ) 4 − x 2 d x x = 2 sin t , − π / 2 ≤ t ≤ π / 2 x=2\sin{t},\ -\pi/2\leq t\leq \pi/2 x = 2 sin t , − π /2 ≤ t ≤ π /2
d x = 2 cos t d t \ dx=2\cos{t}dt d x = 2 cos t d t
4 − x 2 = 2 cos t \sqrt{4-x^2}=2\cos{t} 4 − x 2 = 2 cos t
∫ 2 π ( 3 − x ) 4 − x 2 d x = \int2\pi(3-x)\sqrt{4-x^2}dx= ∫ 2 π ( 3 − x ) 4 − x 2 d x =
= 2 π ∫ ( 3 − 2 sin t ) ( 2 cos t ) ( 2 cos t ) d t = =2\pi \int(3-2\sin{t})(2\cos{t})(2\cos{t})dt= = 2 π ∫ ( 3 − 2 sin t ) ( 2 cos t ) ( 2 cos t ) d t =
= 24 π ∫ cos 2 t d t − 16 π ∫ sin t cos 2 t d t = =24\pi \int\cos^2{t}dt-16\pi\int\sin{t}\cos^2{t}dt= = 24 π ∫ cos 2 t d t − 16 π ∫ sin t cos 2 t d t =
= 12 π ∫ ( 1 + cos 2 t ) d t + 16 π ( cos 3 t 3 ) = =12\pi \int(1+\cos{2t})dt+16\pi ({\cos^3{t} \over 3})= = 12 π ∫ ( 1 + cos 2 t ) d t + 16 π ( 3 cos 3 t ) =
= 12 π t + 6 π sin 2 t + 16 π 3 cos 3 t + C = =12\pi t+6\pi \sin{2t}+{16\pi \over 3}\cos^3{t}+C= = 12 π t + 6 π sin 2 t + 3 16 π cos 3 t + C =
= 12 π arcsin ( x 2 ) + 3 π x 4 − x 2 + 2 π 3 ( 4 − x 2 ) 3 / 2 + C =12\pi\arcsin{({x \over 2})}+3\pi x\sqrt{4-x^2}+{2\pi \over 3}(4-x^2)^{3/2}+C = 12 π arcsin ( 2 x ) + 3 π x 4 − x 2 + 3 2 π ( 4 − x 2 ) 3/2 + C
V 1 = π [ 12 arcsin ( x 2 ) + 3 x 4 − x 2 + 2 3 ( 4 − x 2 ) 3 / 2 ] 2 − 2 = V_1=\pi\bigg[12\arcsin{({x \over 2})}+3x\sqrt{4-x^2}+{2\over 3}(4-x^2)^{3/2}\bigg]\begin{matrix}
2 \\
-2
\end{matrix}= V 1 = π [ 12 arcsin ( 2 x ) + 3 x 4 − x 2 + 3 2 ( 4 − x 2 ) 3/2 ] 2 − 2 =
= π ( 12 ( π 2 ) + 0 + 0 − 12 ( − π 2 ) − 0 − 0 ) = 12 π 2 ( u n i t s 3 ) =\pi(12({\pi \over 2})+0+0-12(-{\pi \over 2})-0-0)=12\pi^2 (units^3) = π ( 12 ( 2 π ) + 0 + 0 − 12 ( − 2 π ) − 0 − 0 ) = 12 π 2 ( u ni t s 3 )
V = 2 V 1 = 2 ( 12 π 2 ) = 24 π 2 ( u n i t s 3 ) V=2V_1=2(12\pi^2)=24\pi^2(units^3) V = 2 V 1 = 2 ( 12 π 2 ) = 24 π 2 ( u ni t s 3 ) The volume of the solid generated by revolving the circle x 2 + y 2 = 4 x^2+y^2=4 x 2 + y 2 = 4 about the line x = 3 x=3 x = 3 is 24 π 2 24\pi^2 24 π 2 cubic units.
Comments