Consider "x^2+y^2=4, y\\geq0." Then "y=\\sqrt{4-x^2}"
Figure shows the region and a cylindrical shell formed by rotation about the line "x=3." It has radius "3-x," circumference "2\\pi(3-x)," and height "\\sqrt{4-x^2}."
The volume of the given solid is
"x=2\\sin{t},\\ -\\pi\/2\\leq t\\leq \\pi\/2"
"\\ dx=2\\cos{t}dt"
"\\sqrt{4-x^2}=2\\cos{t}"
"=2\\pi \\int(3-2\\sin{t})(2\\cos{t})(2\\cos{t})dt="
"=24\\pi \\int\\cos^2{t}dt-16\\pi\\int\\sin{t}\\cos^2{t}dt="
"=12\\pi \\int(1+\\cos{2t})dt+16\\pi ({\\cos^3{t} \\over 3})="
"=12\\pi t+6\\pi \\sin{2t}+{16\\pi \\over 3}\\cos^3{t}+C="
"=12\\pi\\arcsin{({x \\over 2})}+3\\pi x\\sqrt{4-x^2}+{2\\pi \\over 3}(4-x^2)^{3\/2}+C"
"V_1=\\pi\\bigg[12\\arcsin{({x \\over 2})}+3x\\sqrt{4-x^2}+{2\\over 3}(4-x^2)^{3\/2}\\bigg]\\begin{matrix}\n 2 \\\\\n -2\n\\end{matrix}="
"=\\pi(12({\\pi \\over 2})+0+0-12(-{\\pi \\over 2})-0-0)=12\\pi^2 (units^3)"
"V=2V_1=2(12\\pi^2)=24\\pi^2(units^3)"
The volume of the solid generated by revolving the circle "x^2+y^2=4" about the line "x=3" is "24\\pi^2" cubic units.
Comments
Leave a comment