Consider x2+y2=4,y≥0. Then y=4−x2
Figure shows the region and a cylindrical shell formed by rotation about the line x=3. It has radius 3−x, circumference 2π(3−x), and height 4−x2.
The volume of the given solid is
V1=∫−222π(3−x)4−x2dx x=2sint, −π/2≤t≤π/2
dx=2costdt
4−x2=2cost
∫2π(3−x)4−x2dx=
=2π∫(3−2sint)(2cost)(2cost)dt=
=24π∫cos2tdt−16π∫sintcos2tdt=
=12π∫(1+cos2t)dt+16π(3cos3t)=
=12πt+6πsin2t+316πcos3t+C=
=12πarcsin(2x)+3πx4−x2+32π(4−x2)3/2+C
V1=π[12arcsin(2x)+3x4−x2+32(4−x2)3/2]2−2=
=π(12(2π)+0+0−12(−2π)−0−0)=12π2(units3)
V=2V1=2(12π2)=24π2(units3)The volume of the solid generated by revolving the circle x2+y2=4 about the line x=3 is 24π2 cubic units.
Comments