Question #113344
Eliminate θ from the equations 4x = cos(3θ) + 3 cos θ; 4y = 3 sin θ  sin(3θ)
1
Expert's answer
2020-05-06T19:58:39-0400

Eliminate θ\theta from the equations

4x=cos(3θ)+3cosθ;4y=3sinθsin(3θ)4x=cos(3\theta)+3cos\theta; 4y=3sin\theta-sin(3\theta)

Solution:

cos(3θ)=4cos3θ3cosθcos(3\theta)=4cos^3\theta-3cos\theta

sin(3θ)=3inθ4cos3θsin(3\theta)=3in\theta-4cos^3\theta

4x=4cos3θ3cosθ+3cosθ4x=4cos^3\theta-3cos\theta+3cos\theta

4y=3sinθ3sinθ+4sin3θ4y=3sin\theta-3sin\theta+4sin^3\theta

x=cos3θx=cos^3\theta

y=sin3θy=sin^3\theta

x13=cosθx^{\frac{1}{3}}=cos\theta

y13=sinθy^{\frac{1}{3}}=sin\theta

cos2θ+sin2θ=1cos^2\theta+sin^2\theta=1

Aswer:

x23+y23=1.x^{\frac{2}{3}}+y^{\frac{2}{3}}=1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS