The binomial expansion of
(1+x)n=1+nx+n(n−1)2!x2+....(1+x)^n=1+nx+\frac{n(n-1)}{2!}x^2+....(1+x)n=1+nx+2!n(n−1)x2+....
For (1−x)12(1-x)^{\frac12}(1−x)21
Put x=−xx=-xx=−x and n=12n=\frac{1}2n=21
(1−x)12=1−x2+12(−12)2!x2+....(1-x)^\frac12=1-\frac{x}{2}+\frac{\frac12(\frac{-1}{2})}{2!}x^2+....(1−x)21=1−2x+2!21(2−1)x2+....
−1<−x<1-1<-x<1−1<−x<1
−1<x<1-1<x<1−1<x<1
For (2−x)−2=2−2(1−x2)−2(2-x)^{-2}=2^{-2}(1-\frac x 2)^{-2}(2−x)−2=2−2(1−2x)−2
(2−x)−2=2−2[1+x+3x24+....](2-x)^{-2}=2^{-2}[1+x+\frac{3x^2}{4}+....](2−x)−2=2−2[1+x+43x2+....]
−1<−(x2)<1-1<-(\frac{x}{2})<1−1<−(2x)<1
−2<x<2-2<x<2−2<x<2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment