Answer to Question #112490 in Calculus for Leo

Question #112490
Make use of binomial theorem to expand binomial expression & show the range of values of x for which expansion is valid? 1. (2-x)^-2 and 2. (1-x)^1/2

^ = to power of
1
Expert's answer
2020-04-27T19:57:23-0400

The binomial expansion of

(1+x)n=1+nx+n(n1)2!x2+....(1+x)^n=1+nx+\frac{n(n-1)}{2!}x^2+....

For (1x)12(1-x)^{\frac12}

Put x=xx=-x and n=12n=\frac{1}2

(1x)12=1x2+12(12)2!x2+....(1-x)^\frac12=1-\frac{x}{2}+\frac{\frac12(\frac{-1}{2})}{2!}x^2+....

1<x<1-1<-x<1

1<x<1-1<x<1

For (2x)2=22(1x2)2(2-x)^{-2}=2^{-2}(1-\frac x 2)^{-2}

(2x)2=22[1+x+3x24+....](2-x)^{-2}=2^{-2}[1+x+\frac{3x^2}{4}+....]

1<(x2)<1-1<-(\frac{x}{2})<1

2<x<2-2<x<2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment