I = ∫ 1 2 ( c o t ( x ) + s i n ( x ) ) d x = ∫ 1 2 c o t ( x ) d x + ∫ 1 2 s i n ( x ) d x I=\int\limits_1^2(cot(x)+sin(x))dx=\int\limits_1^2cot(x)dx+\int\limits_1^2sin(x)dx\\ I = 1 ∫ 2 ( co t ( x ) + s in ( x )) d x = 1 ∫ 2 co t ( x ) d x + 1 ∫ 2 s in ( x ) d x
∫ 1 2 c o s ( x ) s i n t ( x ) d x = ∣ t = s i n ( x ) d t = d s i n ( x ) = c o s ( x ) d x ∣ = ∫ s i n ( 1 ) s i n ( 2 ) d t t = l n ∣ t ∣ ∣ s i n ( 1 ) s i n ( 2 ) = l n ( s i n ( 2 ) ) − l n ( s i n ( 1 ) ) \int\limits_1^2\frac{cos(x)}{sint(x)}dx=\begin{vmatrix}t=sin(x)\\dt=dsin(x)=cos(x)dx\end{vmatrix}=\int\limits_{sin(1)}^{sin(2)}\frac{dt}{t}=\\
ln|t|\bigg|_{sin(1)}^{sin(2)}=ln(sin(2))-ln(sin(1)) 1 ∫ 2 s in t ( x ) cos ( x ) d x = ∣ ∣ t = s in ( x ) d t = d s in ( x ) = cos ( x ) d x ∣ ∣ = s in ( 1 ) ∫ s in ( 2 ) t d t = l n ∣ t ∣ ∣ ∣ s in ( 1 ) s in ( 2 ) = l n ( s in ( 2 )) − l n ( s in ( 1 ))
∫ 1 2 s i n ( x ) d x = − c o s ( x ) ∣ 1 2 = − c o s ( 2 ) + c o s ( 1 ) \int\limits_1^2sin(x)dx=-cos(x)\bigg|_1^2=-cos(2)+cos(1) 1 ∫ 2 s in ( x ) d x = − cos ( x ) ∣ ∣ 1 2 = − cos ( 2 ) + cos ( 1 )
I = l n ( s i n ( 2 ) ) − l n ( s i n ( 1 ) ) − c o s ( 2 ) + c o s ( 1 ) I=ln(sin(2))-ln(sin(1))-cos(2)+cos(1) I = l n ( s in ( 2 )) − l n ( s in ( 1 )) − cos ( 2 ) + cos ( 1 )
Comments