∫²∫1(cotx + sinx)dx
"I=\\int\\limits_1^2(cot(x)+sin(x))dx=\\int\\limits_1^2cot(x)dx+\\int\\limits_1^2sin(x)dx\\\\"
"\\int\\limits_1^2\\frac{cos(x)}{sint(x)}dx=\\begin{vmatrix}t=sin(x)\\\\dt=dsin(x)=cos(x)dx\\end{vmatrix}=\\int\\limits_{sin(1)}^{sin(2)}\\frac{dt}{t}=\\\\\nln|t|\\bigg|_{sin(1)}^{sin(2)}=ln(sin(2))-ln(sin(1))"
"\\int\\limits_1^2sin(x)dx=-cos(x)\\bigg|_1^2=-cos(2)+cos(1)"
"I=ln(sin(2))-ln(sin(1))-cos(2)+cos(1)"
Comments
Leave a comment