"g(x)=\\frac{1}{\\sqrt{x + \\sqrt{x}}}, \\quad g: \\mathbb{R}^+ \\to \\mathbb{R}^+"
Let "f(x)=\\sqrt{x}, h(x)=\\sqrt{x^2+x}, \\text{ and } k(x) = \\frac{1}{x}."
Determine "h\\circ f."
"h\\circ f = h(f(x)) = \\sqrt{(f(x))^2 + f(x)} = \\sqrt{(\\sqrt{x})^2 + \\sqrt{x}} \\\\\n\\qquad = \\sqrt{x + \\sqrt{x}}"
Now, determine "k\\circ(h\\circ f)."
"k\\circ(h\\circ f) = k(h(f(x))) = \\frac{1}{h(f(x))} = \\frac{1}{\\sqrt{x + \\sqrt{x}} }"
Therefore, "g(x) = k\\circ(h\\circ f), \\text{ where } f(x)=\\sqrt{x}, h(x)=\\sqrt{x^2+x}, \n\\text{ and } k(x) = \\frac{1}{x}."
Comments
Leave a comment