Question #104052
Express the function g: R+-R+ is defined by , g(X) =1/√x+√x, as a composition of three function
1
Expert's answer
2020-02-27T12:13:05-0500

g(x)=1x+x,g:R+R+g(x)=\frac{1}{\sqrt{x + \sqrt{x}}}, \quad g: \mathbb{R}^+ \to \mathbb{R}^+


Let f(x)=x,h(x)=x2+x, and k(x)=1x.f(x)=\sqrt{x}, h(x)=\sqrt{x^2+x}, \text{ and } k(x) = \frac{1}{x}.


Determine hf.h\circ f.

hf=h(f(x))=(f(x))2+f(x)=(x)2+x=x+xh\circ f = h(f(x)) = \sqrt{(f(x))^2 + f(x)} = \sqrt{(\sqrt{x})^2 + \sqrt{x}} \\ \qquad = \sqrt{x + \sqrt{x}}


Now, determine k(hf).k\circ(h\circ f).


k(hf)=k(h(f(x)))=1h(f(x))=1x+xk\circ(h\circ f) = k(h(f(x))) = \frac{1}{h(f(x))} = \frac{1}{\sqrt{x + \sqrt{x}} }


Therefore, g(x)=k(hf), where f(x)=x,h(x)=x2+x, and k(x)=1x.g(x) = k\circ(h\circ f), \text{ where } f(x)=\sqrt{x}, h(x)=\sqrt{x^2+x}, \text{ and } k(x) = \frac{1}{x}.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS