Question #104034
Trace the curve Y=(2x²-8)/(x²-16) by showing all the properties used to trace the curve.
1
Expert's answer
2020-02-27T11:52:50-0500

1) Domain, vertical asymptotes and intercepts.

The domain is (,4)(4,4)(4,),(-\infty,-4) \cup (-4, 4) \cup (4, \infty), since xx cannot be equal to ±4.\pm 4.

Determine the one-sided limits in points 4-4 and 4.4.


limx4+2x28x216=limx42x28x216=+limx4+2x28x216=+limx42x28x216=\lim\limits_{x\to -4^{+}}\frac{2x^2-8}{x^2-16} = -\infty \quad \lim\limits_{x\to -4^{-}}\frac{2x^2-8}{x^2-16} = +\infty \\ \lim\limits_{x\to 4^{+}}\frac{2x^2-8}{x^2-16} = +\infty \quad \lim\limits_{x\to 4^{-}}\frac{2x^2-8}{x^2-16} = -\infty


Therefore, x=4 and x=4x=-4 \text{ and } x=4 are the vertical asymptotes.

Determine the x-intercept(s).x\text{-intercept(s)}.

y=02x28x216=02x28=02(x24)=0(x2)(x+2)=0x=2,  x=2y=0 \\ \frac{2x^2-8}{x^2-16} = 0 \\ 2x^2 - 8 = 0 \\ 2(x^2-4)=0 \\ (x-2)(x+2) = 0 \\ x=-2, \;x=2

So, the x-intercepts are (2,0) and (2,0).x\text{-intercepts are } (-2,0) \text{ and } (2,0).


Determine the y-intercept(s).y\text{-intercept(s)}.

x=0y=2(0)28(0)216=12x=0 \\ y = \frac{2(0)^2 - 8}{(0)^2-16} = \frac{1}{2}

So, the y-intercept is (0,12).y\text{-intercept is } (0,\frac{1}{2}).


2) Symmetry.

f(x)=2(x)28(x)216=2x28x216=f(x)f(-x) = \frac{2(-x)^2-8}{(-x)^2-16} = \frac{2x^2-8}{x^2-16} = f(x)


Therefore, the function is even.


3) Non-vertical asymptotes.

Let y=kx+by=kx+b is an equation of a non-vertical asymptote. Here,


k=limxf(x)x=limx2x28x(x216)=0b=limx(f(x)kx)=limx2x28x216=2k = \lim\limits_{x\to\infty}\frac{f(x)}{x} = \lim\limits_{x\to\infty}\frac{2x^2-8}{x(x^2-16)} = 0 \\ b = \lim\limits_{x\to\infty}(f(x) - kx) = \lim\limits_{x\to\infty}\frac{2x^2-8}{x^2-16} = 2

Therefore, y=2y=2 is the horizontal asymptote.


4) Monotonicity

y=(2x28x216)=4x(x216)2x(2x28)(x216)2=48x(x216)2y=0 when x=0y'=(\frac{2x^2-8}{x^2-16})' = \frac{4x(x^2-16) - 2x(2x^2-8)}{(x^2-16)^2} = \frac{-48x}{(x^2-16)^2} \\ y'=0 \text{ when } x=0

If x<0x<0, then y>0y'>0. If x>0x>0, then y<0.y'<0. Therefore, when x<0x<0 the function is increasing, when x>0x>0 the function is decreasing, and x=0x=0 is the maximum.


5) Convex

y=(2x28x216)=(48x(x216)2)=48(x216)2+48x2(x216)(2x)(x216)4=48(3x2+16)(x216)3y'' = (\frac{2x^2-8}{x^2-16})'' = (\frac{-48x}{(x^2-16)^2})' = \frac{-48(x^2-16)^2 + 48x\cdot2(x^2-16)\cdot(2x)}{(x^2-16)^4} \\ \quad = \frac{48(3x^2+16)}{(x^2-16)^3}

The second derivative has no roots, but it has the points, when the second derivative does not exist (x=4,x=4).(x=-4,x=4).


If x<4x<-4, then y>0.y''>0. If 4<x<4-4<x<4, then y<0.y''<0. If x>4,x>4, then y>0.y''>0. Therefore, when x<4 and x>4x<-4 \text{ and } x>4 the function concave upward, and when 4<x<4-4<x<4 the function concave downward.


Draw a graph.






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS