1) Domain, vertical asymptotes and intercepts.
The domain is (−∞,−4)∪(−4,4)∪(4,∞), since x cannot be equal to ±4.
Determine the one-sided limits in points −4 and 4.
x→−4+limx2−162x2−8=−∞x→−4−limx2−162x2−8=+∞x→4+limx2−162x2−8=+∞x→4−limx2−162x2−8=−∞
Therefore, x=−4 and x=4 are the vertical asymptotes.
Determine the x-intercept(s).
y=0x2−162x2−8=02x2−8=02(x2−4)=0(x−2)(x+2)=0x=−2,x=2
So, the x-intercepts are (−2,0) and (2,0).
Determine the y-intercept(s).
x=0y=(0)2−162(0)2−8=21
So, the y-intercept is (0,21).
2) Symmetry.
f(−x)=(−x)2−162(−x)2−8=x2−162x2−8=f(x)
Therefore, the function is even.
3) Non-vertical asymptotes.
Let y=kx+b is an equation of a non-vertical asymptote. Here,
k=x→∞limxf(x)=x→∞limx(x2−16)2x2−8=0b=x→∞lim(f(x)−kx)=x→∞limx2−162x2−8=2
Therefore, y=2 is the horizontal asymptote.
4) Monotonicity
y′=(x2−162x2−8)′=(x2−16)24x(x2−16)−2x(2x2−8)=(x2−16)2−48xy′=0 when x=0
If x<0, then y′>0. If x>0, then y′<0. Therefore, when x<0 the function is increasing, when x>0 the function is decreasing, and x=0 is the maximum.
5) Convex
y′′=(x2−162x2−8)′′=((x2−16)2−48x)′=(x2−16)4−48(x2−16)2+48x⋅2(x2−16)⋅(2x)=(x2−16)348(3x2+16)
The second derivative has no roots, but it has the points, when the second derivative does not exist (x=−4,x=4).
If x<−4, then y′′>0. If −4<x<4, then y′′<0. If x>4, then y′′>0. Therefore, when x<−4 and x>4 the function concave upward, and when −4<x<4 the function concave downward.
Draw a graph.
Comments