1) Domain, vertical asymptotes and intercepts.
The domain is "(-\\infty,-4) \\cup (-4, 4) \\cup (4, \\infty)," since "x" cannot be equal to "\\pm 4."
Determine the one-sided limits in points "-4" and "4."
"\\lim\\limits_{x\\to -4^{+}}\\frac{2x^2-8}{x^2-16} = -\\infty \\quad\n\\lim\\limits_{x\\to -4^{-}}\\frac{2x^2-8}{x^2-16} = +\\infty \\\\\n\n\\lim\\limits_{x\\to 4^{+}}\\frac{2x^2-8}{x^2-16} = +\\infty \\quad\n\\lim\\limits_{x\\to 4^{-}}\\frac{2x^2-8}{x^2-16} = -\\infty"
Therefore, "x=-4 \\text{ and } x=4" are the vertical asymptotes.
Determine the "x\\text{-intercept(s)}."
"y=0 \\\\\n\\frac{2x^2-8}{x^2-16} = 0 \\\\\n2x^2 - 8 = 0 \\\\\n2(x^2-4)=0 \\\\\n(x-2)(x+2) = 0 \\\\\nx=-2, \\;x=2"
So, the "x\\text{-intercepts are } (-2,0) \\text{ and } (2,0)."
Determine the "y\\text{-intercept(s)}."
"x=0 \\\\\ny = \\frac{2(0)^2 - 8}{(0)^2-16} = \\frac{1}{2}"
So, the "y\\text{-intercept is } (0,\\frac{1}{2})."
2) Symmetry.
"f(-x) = \\frac{2(-x)^2-8}{(-x)^2-16} = \\frac{2x^2-8}{x^2-16} = f(x)"
Therefore, the function is even.
3) Non-vertical asymptotes.
Let "y=kx+b" is an equation of a non-vertical asymptote. Here,
"k = \\lim\\limits_{x\\to\\infty}\\frac{f(x)}{x} = \\lim\\limits_{x\\to\\infty}\\frac{2x^2-8}{x(x^2-16)} = 0 \\\\\n\nb = \\lim\\limits_{x\\to\\infty}(f(x) - kx) = \\lim\\limits_{x\\to\\infty}\\frac{2x^2-8}{x^2-16} = 2"
Therefore, "y=2" is the horizontal asymptote.
4) Monotonicity
"y'=(\\frac{2x^2-8}{x^2-16})' = \\frac{4x(x^2-16) - 2x(2x^2-8)}{(x^2-16)^2} = \\frac{-48x}{(x^2-16)^2} \\\\\n\ny'=0 \\text{ when } x=0"
If "x<0", then "y'>0". If "x>0", then "y'<0." Therefore, when "x<0" the function is increasing, when "x>0" the function is decreasing, and "x=0" is the maximum.
5) Convex
"y'' = (\\frac{2x^2-8}{x^2-16})'' = (\\frac{-48x}{(x^2-16)^2})' = \\frac{-48(x^2-16)^2 + 48x\\cdot2(x^2-16)\\cdot(2x)}{(x^2-16)^4} \\\\\n\n\\quad = \\frac{48(3x^2+16)}{(x^2-16)^3}"
The second derivative has no roots, but it has the points, when the second derivative does not exist "(x=-4,x=4)."
If "x<-4", then "y''>0." If "-4<x<4", then "y''<0." If "x>4," then "y''>0." Therefore, when "x<-4 \\text{ and } x>4" the function concave upward, and when "-4<x<4" the function concave downward.
Draw a graph.
Comments
Leave a comment