"1-\\frac{1}{\\sqrt2}+\\frac{1}{\\sqrt3}-\\frac{1}{\\sqrt4}+...+\\frac{(-1)^{n-1}}{\\sqrt n}+...(*)\\\\\na_n=\\frac{(-1)^{n-1}}{\\sqrt n}=\\frac{(-1)^{n-1}}{ n^\\frac{1}{2}}."
Consider a series of modules
"1+\\frac{1}{\\sqrt2}+\\frac{1}{\\sqrt3}+\\frac{1}{\\sqrt4}+...+\\frac{1}{\\sqrt n}+...(**)\\\\"
Series
"\\sum\\limits_{n=1}^{\\infty} \\frac{1}{n^\\alpha}"
convergent if "\\alpha>1" , divergent if "\\alpha \\leq1" .
In our case "\\alpha=\\frac{1}{2}<1" then series (**) is divergent.
We examine the series (*) on the basis of Leibniz
"1) |a_1|>|a_2|>...>|a_n|>..."
in our case
"1>\\frac{1}{\\sqrt 2}>\\frac{1}{\\sqrt 3}>...>\\frac{1}{\\sqrt n}>...\\\\\n2) \\lim\\limits_{n\\mapsto \\infty}|a_n|=\\lim\\limits_{n\\mapsto \\infty} \\frac{1}{\\sqrt n}=0."
According to Leibniz, the series (*) is convergent.
Since the series (**) is divergent and the series (*) is convergent, the series (*) is conventionally convergent.
Comments
Leave a comment