Question #103938
Justify that


lim 1/(5-x)^2
x tend to5 = ∞
1
Expert's answer
2020-03-09T14:10:11-0400

limx51(5x)2=x0=5,f(x)=1(5x)2.\lim\limits _{x\mapsto 5}\frac{1}{(5-x)^2}=\infty\\ x_0=5, f(x)=\frac{1}{(5-x)^2}.

It must be shown that

k>0δ(k)>0,xx0<δ\forall k>0\quad \exist\delta(k)>0, \quad |x-x_0|<\delta

performed

f(x)>k.|f(x)|>k.

Consider

x5<δ|x-5|<\delta

then

1x5>1δ\frac{1}{|x-5|}>\frac{1}{\delta}

because

δ>0,x5>0.\delta>0, \quad |x-5|>0.

Consider

f(x)=1(5x)2=1(x5)2==1x52>1δ2>k    1δ2>k    δ2<1k    δ<1k.|f(x)|=\left|\frac{1}{(5-x)^2}\right|=\frac{1}{|(x-5)^2|}=\\ =\frac{1}{|x-5|^2}>\frac{1}{\delta^2}>k\implies\\ \frac{1}{\delta^2}>k \implies \delta^2<\frac{1}{k} \implies\\ \delta<\frac{1}{\sqrt{k}}.

So at δ<1k\delta<\frac{1}{\sqrt{k}} have 1(5x)2>k\left|\frac{1}{(5-x)^2}\right|>k ,

which means that

limx51(5x)2=.\lim\limits _{x\mapsto 5}\frac{1}{(5-x)^2}=\infty.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS