"\\lim\\limits _{x\\mapsto 5}\\frac{1}{(5-x)^2}=\\infty\\\\\nx_0=5, f(x)=\\frac{1}{(5-x)^2}."
It must be shown that
"\\forall k>0\\quad \\exist\\delta(k)>0, \\quad |x-x_0|<\\delta"
performed
"|f(x)|>k."
Consider
"|x-5|<\\delta"
then
"\\frac{1}{|x-5|}>\\frac{1}{\\delta}"
because
"\\delta>0, \\quad |x-5|>0."
Consider
"|f(x)|=\\left|\\frac{1}{(5-x)^2}\\right|=\\frac{1}{|(x-5)^2|}=\\\\\n=\\frac{1}{|x-5|^2}>\\frac{1}{\\delta^2}>k\\implies\\\\\n\\frac{1}{\\delta^2}>k \\implies \\delta^2<\\frac{1}{k} \\implies\\\\\n \\delta<\\frac{1}{\\sqrt{k}}."
So at "\\delta<\\frac{1}{\\sqrt{k}}" have "\\left|\\frac{1}{(5-x)^2}\\right|>k" ,
which means that
"\\lim\\limits _{x\\mapsto 5}\\frac{1}{(5-x)^2}=\\infty."
Comments
Leave a comment