lim x ↦ 5 1 ( 5 − x ) 2 = ∞ x 0 = 5 , f ( x ) = 1 ( 5 − x ) 2 . \lim\limits _{x\mapsto 5}\frac{1}{(5-x)^2}=\infty\\
x_0=5, f(x)=\frac{1}{(5-x)^2}. x ↦ 5 lim ( 5 − x ) 2 1 = ∞ x 0 = 5 , f ( x ) = ( 5 − x ) 2 1 .
It must be shown that
∀ k > 0 ∃ δ ( k ) > 0 , ∣ x − x 0 ∣ < δ \forall k>0\quad \exist\delta(k)>0, \quad |x-x_0|<\delta ∀ k > 0 ∃ δ ( k ) > 0 , ∣ x − x 0 ∣ < δ
performed
∣ f ( x ) ∣ > k . |f(x)|>k. ∣ f ( x ) ∣ > k .
Consider
∣ x − 5 ∣ < δ |x-5|<\delta ∣ x − 5∣ < δ
then
1 ∣ x − 5 ∣ > 1 δ \frac{1}{|x-5|}>\frac{1}{\delta} ∣ x − 5∣ 1 > δ 1
because
δ > 0 , ∣ x − 5 ∣ > 0. \delta>0, \quad |x-5|>0. δ > 0 , ∣ x − 5∣ > 0.
Consider
∣ f ( x ) ∣ = ∣ 1 ( 5 − x ) 2 ∣ = 1 ∣ ( x − 5 ) 2 ∣ = = 1 ∣ x − 5 ∣ 2 > 1 δ 2 > k ⟹ 1 δ 2 > k ⟹ δ 2 < 1 k ⟹ δ < 1 k . |f(x)|=\left|\frac{1}{(5-x)^2}\right|=\frac{1}{|(x-5)^2|}=\\
=\frac{1}{|x-5|^2}>\frac{1}{\delta^2}>k\implies\\
\frac{1}{\delta^2}>k \implies \delta^2<\frac{1}{k} \implies\\
\delta<\frac{1}{\sqrt{k}}. ∣ f ( x ) ∣ = ∣ ∣ ( 5 − x ) 2 1 ∣ ∣ = ∣ ( x − 5 ) 2 ∣ 1 = = ∣ x − 5 ∣ 2 1 > δ 2 1 > k ⟹ δ 2 1 > k ⟹ δ 2 < k 1 ⟹ δ < k 1 .
So at δ < 1 k \delta<\frac{1}{\sqrt{k}} δ < k 1 have ∣ 1 ( 5 − x ) 2 ∣ > k \left|\frac{1}{(5-x)^2}\right|>k ∣ ∣ ( 5 − x ) 2 1 ∣ ∣ > k ,
which means that
lim x ↦ 5 1 ( 5 − x ) 2 = ∞ . \lim\limits _{x\mapsto 5}\frac{1}{(5-x)^2}=\infty. x ↦ 5 lim ( 5 − x ) 2 1 = ∞.
Comments