Note: we assume that y=[x] means y=⌊x⌋. Which in turn means
⌊x⌋={m∈x∣m≤x}
( More information: https://en.wikipedia.org/wiki/Floor_and_ceiling_functions )
Since, f:[1;4]→R , then consider how the specified function y=⌊x⌋ behaves on a given interval:
⌊x⌋=⎩⎨⎧1,if1≤x<22,if2≤x<33,if3≤x<44,ifx=4 Then, the function f(x) looks like this
f(x)=⎩⎨⎧3x−15,if1≤x<23x−16,if2≤x<33x−17,if3≤x<43x−18,ifx=4 We see that it is necessary to study the continuity of the function at the points x=2 , x=3 ,
x=4. For this, one-sided limits must be considered.
( More information: https://en.wikipedia.org/wiki/One-sided_limit )
In our case,
x→1+limf(x)=x→1+lim3x−15=3⋅1−15=25f(1)=3⋅1−15=25x→1+limf(x)=25=25=f(1)x→2−limf(x)=x→2−lim3x−15=3⋅2−15=1x→2+limf(x)=x→2+lim3x−16=3⋅2−16=56x→2−limf(x)=1=56=x→2+limf(x)x→3−limf(x)=x→3−lim3x−16=3⋅3−15=86x→3+limf(x)=x→3+lim3x−17=3⋅2−17=87x→3−limf(x)=86=87=x→3+limf(x)x→4−limf(x)=x→4−lim3x−17=3⋅4−17=117f(4)=3⋅4−18=118x→4−limf(x)=117=118=f(x) Conclusion,
The function f(x) is discontinuous at the points x=2 , x=3 , x=4 .
The function f(x) is continuous at the point x=1 .
Comments