Question #103931
Examine the continuity of the function f:[1,4]→R defined by f(x)= [ x]+4/(3x-1)
1
Expert's answer
2020-03-09T11:27:30-0400

Note: we assume that y=[x]y=[x] means y=xy=\lfloor x\rfloor. Which in turn means


x={mxmx}\lfloor x\rfloor=\left\{\left.m\in\mathbb{x}\right|m\le x\right\}


( More information: https://en.wikipedia.org/wiki/Floor_and_ceiling_functions )

Since, f:[1;4]Rf : [1;4]\to\mathbb{R} , then consider how the specified function y=xy=\lfloor x\rfloor behaves on a given interval:


x={1,if1x<22,if2x<33,if3x<44,ifx=4\lfloor x\rfloor=\left\{\begin{array}{c} 1,\,\,\,\text{if}\,\,\,1\le x<2\\ 2,\,\,\,\text{if}\,\,\,2\le x<3\\ 3,\,\,\,\text{if}\,\,\,3\le x<4\\ 4,\,\,\,\text{if}\,\,\,x=4 \end{array}\right.

Then, the function f(x)f(x) looks like this


f(x)={53x1,if1x<263x1,if2x<373x1,if3x<483x1,ifx=4f(x)=\left\{\begin{array}{l} \displaystyle\frac{5}{3x-1},\,\,\,\text{if}\,\,\,1\le x<2\\[0.5cm] \displaystyle\frac{6}{3x-1},\,\,\,\text{if}\,\,\,2\le x<3\\[0.5cm] \displaystyle\frac{7}{3x-1},\,\,\,\text{if}\,\,\,3\le x<4\\[0.5cm] \displaystyle\frac{8}{3x-1},\,\,\,\text{if}\,\,\,x=4 \end{array}\right.

We see that it is necessary to study the continuity of the function at the points x=2x=2 , x=3x=3 ,

x=4x=4. For this, one-sided limits must be considered.

( More information: https://en.wikipedia.org/wiki/One-sided_limit )

In our case,


limx1+f(x)=limx1+53x1=5311=52f(1)=5311=52limx1+f(x)=52=52=f(1)limx2f(x)=limx253x1=5321=1limx2+f(x)=limx2+63x1=6321=65limx2f(x)=165=limx2+f(x)limx3f(x)=limx363x1=5331=68limx3+f(x)=limx3+73x1=7321=78limx3f(x)=6878=limx3+f(x)limx4f(x)=limx473x1=7341=711f(4)=8341=811limx4f(x)=711811=f(x)\lim\limits_{x\to 1^+}f(x)=\lim\limits_{x\to 1^+}\frac{5}{3x-1}=\frac{5}{3\cdot 1-1}=\frac{5}{2}\\[0.5cm] f(1)=\frac{5}{3\cdot 1-1}=\frac{5}{2}\\[0.5cm] \boxed{\lim\limits_{x\to 1^+}f(x)=\frac{5}{2}=\frac{5}{2}=f(1)}\\[0.5cm] \lim\limits_{x\to 2^-}f(x)=\lim\limits_{x\to 2^-}\frac{5}{3x-1}=\frac{5}{3\cdot 2-1}=1\\[0.5cm] \lim\limits_{x\to 2^+}f(x)=\lim\limits_{x\to 2^+}\frac{6}{3x-1}=\frac{6}{3\cdot 2-1}=\frac{6}{5}\\[0.5cm] \boxed{\lim\limits_{x\to 2^-}f(x)=1\neq\frac{6}{5}=\lim\limits_{x\to 2^+}f(x)}\\[0.5cm] \lim\limits_{x\to 3^-}f(x)=\lim\limits_{x\to 3^-}\frac{6}{3x-1}=\frac{5}{3\cdot 3-1}=\frac{6}{8}\\[0.5cm] \lim\limits_{x\to 3^+}f(x)=\lim\limits_{x\to 3^+}\frac{7}{3x-1}=\frac{7}{3\cdot 2-1}=\frac{7}{8}\\[0.5cm] \boxed{\lim\limits_{x\to 3^-}f(x)=\frac{6}{8}\neq\frac{7}{8}=\lim\limits_{x\to 3^+}f(x)}\\[0.5cm] \lim\limits_{x\to 4^-}f(x)=\lim\limits_{x\to 4^-}\frac{7}{3x-1}=\frac{7}{3\cdot 4-1}=\frac{7}{11}\\[0.5cm] f(4)=\frac{8}{3\cdot4-1}=\frac{8}{11}\\[0.5cm] \boxed{\lim\limits_{x\to 4^-}f(x)=\frac{7}{11}\neq\frac{8}{11}=f(x)}\\[0.5cm]

Conclusion,

The function f(x)f(x) is discontinuous at the points x=2x=2 , x=3x=3 , x=4x=4 .

The function f(x)f(x) is continuous at the point x=1x=1 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS