Note: we assume that y = [ x ] y=[x] y = [ x ] means y = ⌊ x ⌋ y=\lfloor x\rfloor y = ⌊ x ⌋ . Which in turn means
⌊ x ⌋ = { m ∈ x ∣ m ≤ x } \lfloor x\rfloor=\left\{\left.m\in\mathbb{x}\right|m\le x\right\} ⌊ x ⌋ = { m ∈ x ∣ m ≤ x }
( More information: https://en.wikipedia.org/wiki/Floor_and_ceiling_functions )
Since, f : [ 1 ; 4 ] → R f : [1;4]\to\mathbb{R} f : [ 1 ; 4 ] → R , then consider how the specified function y = ⌊ x ⌋ y=\lfloor x\rfloor y = ⌊ x ⌋ behaves on a given interval:
⌊ x ⌋ = { 1 , if 1 ≤ x < 2 2 , if 2 ≤ x < 3 3 , if 3 ≤ x < 4 4 , if x = 4 \lfloor x\rfloor=\left\{\begin{array}{c}
1,\,\,\,\text{if}\,\,\,1\le x<2\\
2,\,\,\,\text{if}\,\,\,2\le x<3\\
3,\,\,\,\text{if}\,\,\,3\le x<4\\
4,\,\,\,\text{if}\,\,\,x=4
\end{array}\right. ⌊ x ⌋ = ⎩ ⎨ ⎧ 1 , if 1 ≤ x < 2 2 , if 2 ≤ x < 3 3 , if 3 ≤ x < 4 4 , if x = 4 Then, the function f ( x ) f(x) f ( x ) looks like this
f ( x ) = { 5 3 x − 1 , if 1 ≤ x < 2 6 3 x − 1 , if 2 ≤ x < 3 7 3 x − 1 , if 3 ≤ x < 4 8 3 x − 1 , if x = 4 f(x)=\left\{\begin{array}{l}
\displaystyle\frac{5}{3x-1},\,\,\,\text{if}\,\,\,1\le x<2\\[0.5cm]
\displaystyle\frac{6}{3x-1},\,\,\,\text{if}\,\,\,2\le x<3\\[0.5cm]
\displaystyle\frac{7}{3x-1},\,\,\,\text{if}\,\,\,3\le x<4\\[0.5cm]
\displaystyle\frac{8}{3x-1},\,\,\,\text{if}\,\,\,x=4
\end{array}\right. f ( x ) = ⎩ ⎨ ⎧ 3 x − 1 5 , if 1 ≤ x < 2 3 x − 1 6 , if 2 ≤ x < 3 3 x − 1 7 , if 3 ≤ x < 4 3 x − 1 8 , if x = 4 We see that it is necessary to study the continuity of the function at the points x = 2 x=2 x = 2 , x = 3 x=3 x = 3 ,
x = 4 x=4 x = 4 . For this, one-sided limits must be considered.
( More information: https://en.wikipedia.org/wiki/One-sided_limit )
In our case,
lim x → 1 + f ( x ) = lim x → 1 + 5 3 x − 1 = 5 3 ⋅ 1 − 1 = 5 2 f ( 1 ) = 5 3 ⋅ 1 − 1 = 5 2 lim x → 1 + f ( x ) = 5 2 = 5 2 = f ( 1 ) lim x → 2 − f ( x ) = lim x → 2 − 5 3 x − 1 = 5 3 ⋅ 2 − 1 = 1 lim x → 2 + f ( x ) = lim x → 2 + 6 3 x − 1 = 6 3 ⋅ 2 − 1 = 6 5 lim x → 2 − f ( x ) = 1 ≠ 6 5 = lim x → 2 + f ( x ) lim x → 3 − f ( x ) = lim x → 3 − 6 3 x − 1 = 5 3 ⋅ 3 − 1 = 6 8 lim x → 3 + f ( x ) = lim x → 3 + 7 3 x − 1 = 7 3 ⋅ 2 − 1 = 7 8 lim x → 3 − f ( x ) = 6 8 ≠ 7 8 = lim x → 3 + f ( x ) lim x → 4 − f ( x ) = lim x → 4 − 7 3 x − 1 = 7 3 ⋅ 4 − 1 = 7 11 f ( 4 ) = 8 3 ⋅ 4 − 1 = 8 11 lim x → 4 − f ( x ) = 7 11 ≠ 8 11 = f ( x ) \lim\limits_{x\to 1^+}f(x)=\lim\limits_{x\to 1^+}\frac{5}{3x-1}=\frac{5}{3\cdot 1-1}=\frac{5}{2}\\[0.5cm]
f(1)=\frac{5}{3\cdot 1-1}=\frac{5}{2}\\[0.5cm]
\boxed{\lim\limits_{x\to 1^+}f(x)=\frac{5}{2}=\frac{5}{2}=f(1)}\\[0.5cm]
\lim\limits_{x\to 2^-}f(x)=\lim\limits_{x\to 2^-}\frac{5}{3x-1}=\frac{5}{3\cdot 2-1}=1\\[0.5cm]
\lim\limits_{x\to 2^+}f(x)=\lim\limits_{x\to 2^+}\frac{6}{3x-1}=\frac{6}{3\cdot 2-1}=\frac{6}{5}\\[0.5cm]
\boxed{\lim\limits_{x\to 2^-}f(x)=1\neq\frac{6}{5}=\lim\limits_{x\to 2^+}f(x)}\\[0.5cm]
\lim\limits_{x\to 3^-}f(x)=\lim\limits_{x\to 3^-}\frac{6}{3x-1}=\frac{5}{3\cdot 3-1}=\frac{6}{8}\\[0.5cm]
\lim\limits_{x\to 3^+}f(x)=\lim\limits_{x\to 3^+}\frac{7}{3x-1}=\frac{7}{3\cdot 2-1}=\frac{7}{8}\\[0.5cm]
\boxed{\lim\limits_{x\to 3^-}f(x)=\frac{6}{8}\neq\frac{7}{8}=\lim\limits_{x\to 3^+}f(x)}\\[0.5cm]
\lim\limits_{x\to 4^-}f(x)=\lim\limits_{x\to 4^-}\frac{7}{3x-1}=\frac{7}{3\cdot 4-1}=\frac{7}{11}\\[0.5cm]
f(4)=\frac{8}{3\cdot4-1}=\frac{8}{11}\\[0.5cm]
\boxed{\lim\limits_{x\to 4^-}f(x)=\frac{7}{11}\neq\frac{8}{11}=f(x)}\\[0.5cm] x → 1 + lim f ( x ) = x → 1 + lim 3 x − 1 5 = 3 ⋅ 1 − 1 5 = 2 5 f ( 1 ) = 3 ⋅ 1 − 1 5 = 2 5 x → 1 + lim f ( x ) = 2 5 = 2 5 = f ( 1 ) x → 2 − lim f ( x ) = x → 2 − lim 3 x − 1 5 = 3 ⋅ 2 − 1 5 = 1 x → 2 + lim f ( x ) = x → 2 + lim 3 x − 1 6 = 3 ⋅ 2 − 1 6 = 5 6 x → 2 − lim f ( x ) = 1 = 5 6 = x → 2 + lim f ( x ) x → 3 − lim f ( x ) = x → 3 − lim 3 x − 1 6 = 3 ⋅ 3 − 1 5 = 8 6 x → 3 + lim f ( x ) = x → 3 + lim 3 x − 1 7 = 3 ⋅ 2 − 1 7 = 8 7 x → 3 − lim f ( x ) = 8 6 = 8 7 = x → 3 + lim f ( x ) x → 4 − lim f ( x ) = x → 4 − lim 3 x − 1 7 = 3 ⋅ 4 − 1 7 = 11 7 f ( 4 ) = 3 ⋅ 4 − 1 8 = 11 8 x → 4 − lim f ( x ) = 11 7 = 11 8 = f ( x ) Conclusion,
The function f ( x ) f(x) f ( x ) is discontinuous at the points x = 2 x=2 x = 2 , x = 3 x=3 x = 3 , x = 4 x=4 x = 4 .
The function f ( x ) f(x) f ( x ) is continuous at the point x = 1 x=1 x = 1 .
Comments