Note: we assume that "y=[x]" means "y=\\lfloor x\\rfloor". Which in turn means
"\\lfloor x\\rfloor=\\left\\{\\left.m\\in\\mathbb{x}\\right|m\\le x\\right\\}"
( More information: https://en.wikipedia.org/wiki/Floor_and_ceiling_functions )
Since, "f : [1;4]\\to\\mathbb{R}" , then consider how the specified function "y=\\lfloor x\\rfloor" behaves on a given interval:
"\\lfloor x\\rfloor=\\left\\{\\begin{array}{c}\n1,\\,\\,\\,\\text{if}\\,\\,\\,1\\le x<2\\\\\n2,\\,\\,\\,\\text{if}\\,\\,\\,2\\le x<3\\\\\n3,\\,\\,\\,\\text{if}\\,\\,\\,3\\le x<4\\\\\n4,\\,\\,\\,\\text{if}\\,\\,\\,x=4\n\\end{array}\\right." Then, the function "f(x)" looks like this
"f(x)=\\left\\{\\begin{array}{l}\n\\displaystyle\\frac{5}{3x-1},\\,\\,\\,\\text{if}\\,\\,\\,1\\le x<2\\\\[0.5cm]\n\\displaystyle\\frac{6}{3x-1},\\,\\,\\,\\text{if}\\,\\,\\,2\\le x<3\\\\[0.5cm]\n\\displaystyle\\frac{7}{3x-1},\\,\\,\\,\\text{if}\\,\\,\\,3\\le x<4\\\\[0.5cm]\n\\displaystyle\\frac{8}{3x-1},\\,\\,\\,\\text{if}\\,\\,\\,x=4\n\\end{array}\\right." We see that it is necessary to study the continuity of the function at the points "x=2" , "x=3" ,
"x=4". For this, one-sided limits must be considered.
( More information: https://en.wikipedia.org/wiki/One-sided_limit )
In our case,
"\\lim\\limits_{x\\to 1^+}f(x)=\\lim\\limits_{x\\to 1^+}\\frac{5}{3x-1}=\\frac{5}{3\\cdot 1-1}=\\frac{5}{2}\\\\[0.5cm]\nf(1)=\\frac{5}{3\\cdot 1-1}=\\frac{5}{2}\\\\[0.5cm]\n\\boxed{\\lim\\limits_{x\\to 1^+}f(x)=\\frac{5}{2}=\\frac{5}{2}=f(1)}\\\\[0.5cm]\n\\lim\\limits_{x\\to 2^-}f(x)=\\lim\\limits_{x\\to 2^-}\\frac{5}{3x-1}=\\frac{5}{3\\cdot 2-1}=1\\\\[0.5cm]\n\\lim\\limits_{x\\to 2^+}f(x)=\\lim\\limits_{x\\to 2^+}\\frac{6}{3x-1}=\\frac{6}{3\\cdot 2-1}=\\frac{6}{5}\\\\[0.5cm]\n\\boxed{\\lim\\limits_{x\\to 2^-}f(x)=1\\neq\\frac{6}{5}=\\lim\\limits_{x\\to 2^+}f(x)}\\\\[0.5cm]\n\\lim\\limits_{x\\to 3^-}f(x)=\\lim\\limits_{x\\to 3^-}\\frac{6}{3x-1}=\\frac{5}{3\\cdot 3-1}=\\frac{6}{8}\\\\[0.5cm]\n\\lim\\limits_{x\\to 3^+}f(x)=\\lim\\limits_{x\\to 3^+}\\frac{7}{3x-1}=\\frac{7}{3\\cdot 2-1}=\\frac{7}{8}\\\\[0.5cm]\n\\boxed{\\lim\\limits_{x\\to 3^-}f(x)=\\frac{6}{8}\\neq\\frac{7}{8}=\\lim\\limits_{x\\to 3^+}f(x)}\\\\[0.5cm]\n\\lim\\limits_{x\\to 4^-}f(x)=\\lim\\limits_{x\\to 4^-}\\frac{7}{3x-1}=\\frac{7}{3\\cdot 4-1}=\\frac{7}{11}\\\\[0.5cm]\nf(4)=\\frac{8}{3\\cdot4-1}=\\frac{8}{11}\\\\[0.5cm]\n\\boxed{\\lim\\limits_{x\\to 4^-}f(x)=\\frac{7}{11}\\neq\\frac{8}{11}=f(x)}\\\\[0.5cm]" Conclusion,
The function "f(x)" is discontinuous at the points "x=2" , "x=3" , "x=4" .
The function "f(x)" is continuous at the point "x=1" .
Comments
Leave a comment