1 STEP: Search for the supremum of a given sequence
"\\frac{n}{n+1}=\\frac{(n+1)-1}{n+1}=1-\\frac{1}{n+1}"
Conclusion,
"S_n=1-\\frac{1}{n+1}<1,\\quad\\forall n\\in\\mathbb{N}\\\\[0.5cm]\n\\boxed{\\sup(S_n)=1}"
2 STEP: Search for the infimum of a given sequence
"1+n\\le n+n,\\forall n\\in\\mathbb{N}\\longrightarrow\\\\[0.5cm]\n\\frac{1}{1+n}\\ge\\frac{1}{n+n}\\longrightarrow\\frac{n}{n+1}\\ge\\frac{n}{n+n}=\\frac{1}{2}"
Conclusion,
"S_n\\ge\\frac{1}{2},\\quad\\forall n\\in\\mathbb{N}\\\\[0.5cm]\n\\boxed{\\inf(S_n)=\\frac{1}{2}}"
Comments
Leave a comment