First we give a wording the Weierstrass’ M-test:
Suppose that "\\left\\{f_n\\right\\}" is a sequence of real- or complex-valued functions defined on a set "A" , and that there is a sequence of positive numbers "\\left\\{M_n\\right\\}" satisfying
"\\forall n\\ge 1,\\quad \\forall x\\in A:\\quad \\left|f_n(x)\\right|\\le M_n\\\\[0.5cm]\n\\sum\\limits_{n=1}^{\\infty}M_n<\\infty\\longrightarrow M_n\\, \\text{converges}" Then,
"\\sum\\limits_{n=1}^{\\infty}f_n(x)"
converges absolutely and uniformly on A.
( More information: https://en.wikipedia.org/wiki/Weierstrass_M-test )
In our case,
"\\forall x\\in[0;k]:\\quad\\left|f_n(x)\\right|=\\left|\\frac{x}{n(n+2)^2}\\right|\\le\\frac{k}{n(n+2)^2}" Then, it remains to prove that the series
"\\sum\\limits_{n=1}^{\\infty}\\frac{k}{n(n+2)^2}\\,\\text{converges}" For this we use the integral test for convergence.
( More information: https://en.wikipedia.org/wiki/Integral_test_for_convergence )
In our case,
"\\int_1^\\infty\\frac{kdx}{x(x+2)^2}=k\\cdot\\int_1^\\infty\\frac{dx}{x\\cdot x^2(1+2\/x)^2}=\\\\[0.3cm]\n=\\left[\\frac{2}{x}=t\\to\\frac{dx}{x^2}=\\frac{dt}{-2};\\,x=1\\to t=2\\,\\,\\text{and}\\,x=\\infty\\to t=0\\right]=\\\\[0.3cm]\n=k\\cdot\\int_2^0\\left(\\frac{tdt}{-4\\cdot (1+t)^2}\\right)=\\frac{k}{4}\\cdot\\int_0^2\\frac{(t+1)-1dt}{ (1+t)^2}=\\\\[0.3cm]\n=\\frac{k}{4}\\cdot\\int_0^2\\left(\\frac{1}{t+1}-\\frac{1}{(t+1)^2}\\right)dt=\\frac{k}{4}\\cdot\\left.\\left(\\ln|t+1|+\\frac{1}{t+1}\\right)\\right|_{t=0}^{t=2}=\\\\[0.3cm]\n=\\frac{k}{4}\\cdot\\left(\\left(\\ln|2+1|+\\frac{1}{2+1}\\right)-\\left(\\ln|0+1|+\\frac{1}{0+1}\\right)\\right)=\\\\[0.3cm]\n=\\frac{k}{4}\\cdot\\left(\\left(\\ln3+\\frac{1}{3}\\right)-\\left(\\ln|1|+1\\right)\\right)=\\frac{k}{4}\\cdot\\left(\\ln3-\\frac{2}{3}\\right)<\\infty""\\boxed{\\int_1^\\infty\\frac{kdx}{x(x+2)^2}=\\frac{k}{4}\\cdot\\left(\\ln3-\\frac{2}{3}\\right)\\approx k\\cdot0.10799}"
Conclusion,
"\\text{Since}\\quad\\sum\\limits_{n=1}^{\\infty}\\frac{k}{n(n+2)^2}\\,\\text{converges}\\to\\\\[0.3cm]\n\\sum\\limits_{n=1}^{\\infty}\\frac{x}{n(n+2)^2}\\,\\text{ uniformly converges}"
Comments
Leave a comment