Question #103936
Check whether the following sequences are convergent:

1){4+(-1)^n}

2){(4n+n^2)/(2n^2+3n)}
1
Expert's answer
2020-03-09T13:38:54-0400

1) xn=4+(1)nx_n=4+(-1)^n

limnxn={4+(1)n=5,n=2k4+(1)n=3,n=2k1\lim\limits_{n\to\infty}x_n=\left \{\begin{matrix} 4+(-1)^{n}=5, n=2k \\ 4+(-1)^{n}=3, n=2k-1 \end{matrix}\right.

because limit  takes two different values ​​then

the sequence is divergent

2) xn=4n+n22n2+3nx_n=\frac{4n+n^2}{2n^2+3n}

consider the limit

limnxn=limn4n+n22n2+3n==limnn2(4n+1)n2(2+3n)==limn4n+12+3n=12\lim\limits_{n\to\infty}x_n=\lim\limits_{n\to\infty}\frac{4n+n^2}{2n^2+3n}=\\ =\lim\limits_{n\to\infty}\frac{n^2(\frac{4}{n}+1)}{n^2(2+\frac{3}{n})}=\\ =\lim\limits_{n\to\infty}\frac{\frac{4}{n}+1}{2+\frac{3}{n}}=\frac{1}{2}

the sequence is convergent


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS