1) "x_n=4+(-1)^n"
"\\lim\\limits_{n\\to\\infty}x_n=\\left\n\\{\\begin{matrix}\n 4+(-1)^{n}=5, n=2k \\\\\n 4+(-1)^{n}=3, n=2k-1 \n\\end{matrix}\\right."
because limit takes two different values then
the sequence is divergent
2) "x_n=\\frac{4n+n^2}{2n^2+3n}"
consider the limit
"\\lim\\limits_{n\\to\\infty}x_n=\\lim\\limits_{n\\to\\infty}\\frac{4n+n^2}{2n^2+3n}=\\\\\n=\\lim\\limits_{n\\to\\infty}\\frac{n^2(\\frac{4}{n}+1)}{n^2(2+\\frac{3}{n})}=\\\\\n=\\lim\\limits_{n\\to\\infty}\\frac{\\frac{4}{n}+1}{2+\\frac{3}{n}}=\\frac{1}{2}"
the sequence is convergent
Comments
Leave a comment