I = ∫ 7 x + 8 2 x 2 + 11 x + 5 d x I=\int\frac{7x+8}{2x^2+11x+5}dx I = ∫ 2 x 2 + 11 x + 5 7 x + 8 d x decompose the denominator into factors
2 x 2 + 11 x + 5 = 2 ( x + 5 ) ( x + 0.5 ) 2 x 2 + 11 x + 5 = 0 D = 121 − 4 ⋅ 2 ⋅ 5 = 81 x 1 = − 11 − 9 4 = − 5 x 2 = − 11 + 9 4 = − 0.5 2x^2+11x+5=2(x+5)(x+0.5)\\
2x^2+11x+5=0\\
D=121-4\cdot2\cdot5=81\\
x_1=\frac{-11-9}{4}=-5\\
x_2=\frac{-11+9}{4}=-0.5 2 x 2 + 11 x + 5 = 2 ( x + 5 ) ( x + 0.5 ) 2 x 2 + 11 x + 5 = 0 D = 121 − 4 ⋅ 2 ⋅ 5 = 81 x 1 = 4 − 11 − 9 = − 5 x 2 = 4 − 11 + 9 = − 0.5
I = ∫ 7 x + 8 2 ( x + 5 ) ( x + 0.5 ) d x = = 1 2 ∫ 7 x + 8 ( x + 5 ) ( x + 0.5 ) d x I=\int\frac{7x+8}{2(x+5)(x+0.5)}dx=\\
=\frac{1}{2}\int\frac{7x+8}{(x+5)(x+0.5)}dx I = ∫ 2 ( x + 5 ) ( x + 0.5 ) 7 x + 8 d x = = 2 1 ∫ ( x + 5 ) ( x + 0.5 ) 7 x + 8 d x
decompose into simple fractions
7 x + 8 ( x + 5 ) ( x + 0.5 ) = A ( x + 5 ) + B ( x + 0.5 ) = A ( x + 0.5 ) + B ( x + 5 ) ( x + 5 ) ( x + 0.5 ) 1 ) x = − 5 : 7 ⋅ ( − 5 ) + 8 = A ( − 5 + 0.5 ) A = 6 2 ) x = − 0.5 7 ⋅ ( − 0.5 ) + 8 = B ( − 0.5 + 5 ) B = 1 \frac{7x+8}{(x+5)(x+0.5)}=\frac{A}{(x+5)}+\frac{B}{(x+0.5)}=\frac{A(x+0.5)+B(x+5)}{(x+5)(x+0.5)}\\
1) x=-5: \\
7\cdot(-5)+8=A(-5+0.5)\\
A=6\\
2) x=-0.5\\
7\cdot(-0.5)+8=B(-0.5+5)\\
B=1 ( x + 5 ) ( x + 0.5 ) 7 x + 8 = ( x + 5 ) A + ( x + 0.5 ) B = ( x + 5 ) ( x + 0.5 ) A ( x + 0.5 ) + B ( x + 5 ) 1 ) x = − 5 : 7 ⋅ ( − 5 ) + 8 = A ( − 5 + 0.5 ) A = 6 2 ) x = − 0.5 7 ⋅ ( − 0.5 ) + 8 = B ( − 0.5 + 5 ) B = 1
I = 1 2 ∫ ( 6 x + 5 + 1 x + 0.5 ) d x = = 1 2 ( 6 l n ∣ x + 5 ∣ + l n ∣ x + 0.5 ∣ ) + C I=\frac{1}{2}\int(\frac{6}{x+5}+\frac{1}{x+0.5})dx=\\
=\frac{1}{2}(6ln|x+5|+ln|x+0.5|)+C I = 2 1 ∫ ( x + 5 6 + x + 0.5 1 ) d x = = 2 1 ( 6 l n ∣ x + 5∣ + l n ∣ x + 0.5∣ ) + C
2
I = ∫ 3 x 2 + 18 x + 3 3 x 2 + 5 x − 2 d x I=\int\frac{3x^2+18x+3}{3x^2+5x-2}dx I = ∫ 3 x 2 + 5 x − 2 3 x 2 + 18 x + 3 d x
perform the division and decompose the denominator into factors
3 x 2 + 18 x + 3 ∣ 3 x 2 + 5 x − 2 3 x 2 + 5 x − 2 1 − − − − − 13 x + 5 3 x 2 + 18 x + 3 3 x 2 + 5 x − 2 = 1 + 13 x + 5 3 x 2 + 5 x − 2 3 x 2 + 5 x − 2 = 3 ( x + 2 ) ( x − 1 3 ) 3 x 2 + 5 x − 2 = 0 D = 25 + 4 ⋅ 3 ⋅ 2 = 49 x 1 = − 5 − 7 6 = − 2 x 2 = − 5 + 7 6 = 1 3 \begin{matrix}
3x^2+18x+3| & 3x^2+5x-2 \\
3x^2+5x-2 & 1\\
-----\\
13x+5\\
\end{matrix}\\
\frac{3x^2+18x+3 }{3x^2+5x-2} =1+\frac{13x+5}{3x^2+5x-2 }\\
3x^2+5x-2 =3(x+2)(x-\frac{1}{3})\\
3x^2+5x-2 =0\\
D=25+4\cdot3\cdot2=49\\
x_1=\frac{-5-7}{6}=-2\\
x_2=\frac{-5+7}{6}=\frac{1}{3} 3 x 2 + 18 x + 3∣ 3 x 2 + 5 x − 2 − − − − − 13 x + 5 3 x 2 + 5 x − 2 1 3 x 2 + 5 x − 2 3 x 2 + 18 x + 3 = 1 + 3 x 2 + 5 x − 2 13 x + 5 3 x 2 + 5 x − 2 = 3 ( x + 2 ) ( x − 3 1 ) 3 x 2 + 5 x − 2 = 0 D = 25 + 4 ⋅ 3 ⋅ 2 = 49 x 1 = 6 − 5 − 7 = − 2 x 2 = 6 − 5 + 7 = 3 1
I = ∫ ( 1 + 13 x + 5 3 ( x + 2 ) ( x − 1 3 ) ) d x = = x + 1 3 ∫ 13 x + 5 ( x + 2 ) ( x − 1 3 ) I=\int(1+\frac{13x+5}{3(x+2)(x-\frac{1}{3})})dx=\\
=x+\frac{1}{3}\int\frac{13x+5}{(x+2)(x-\frac{1}{3})} I = ∫ ( 1 + 3 ( x + 2 ) ( x − 3 1 ) 13 x + 5 ) d x = = x + 3 1 ∫ ( x + 2 ) ( x − 3 1 ) 13 x + 5
decompose into simple fractions
13 x + 5 ( x + 2 ) ( x − 1 3 ) = A ( x + 2 ) + B ( x − 1 3 ) = A ( x − 1 3 ) + B ( x + 2 ) ( x + 2 ) ( x − 1 3 ) 1 ) x = − 2 : 13 ⋅ ( − 2 ) + 5 = A ( − 2 − 1 3 ) A = 33 7 2 ) x = 1 3 13 ⋅ 1 3 + 5 = B ( 1 3 + 2 ) B = 4 \frac{13x+5}{(x+2)(x-\frac{1}{3})}=\frac{A}{(x+2)}+\frac{B}{(x-\frac{1}{3})}=\frac{A(x-\frac{1}{3})+B(x+2)}{(x+2)(x-\frac{1}{3})}\\
1) x=-2: \\
13\cdot(-2)+5=A(-2-\frac{1}{3})\\
A=\frac{33}{7}\\
2) x=\frac{1}{3}\\
13\cdot\frac{1}{3}+5=B(\frac{1}{3}+2)\\
B=4 ( x + 2 ) ( x − 3 1 ) 13 x + 5 = ( x + 2 ) A + ( x − 3 1 ) B = ( x + 2 ) ( x − 3 1 ) A ( x − 3 1 ) + B ( x + 2 ) 1 ) x = − 2 : 13 ⋅ ( − 2 ) + 5 = A ( − 2 − 3 1 ) A = 7 33 2 ) x = 3 1 13 ⋅ 3 1 + 5 = B ( 3 1 + 2 ) B = 4
I = x + 1 3 ∫ ( 33 7 x + 2 + 4 x − 1 3 ) d x = = x + 1 3 ( 33 7 l n ∣ x + 2 ∣ + 4 l n ∣ x − 1 3 ∣ ) + C I=x+\frac{1}{3}\int(\frac{\frac{33}{7}}{x+2}+\frac{4}{x-\frac{1}{3}})dx=\\
=x+\frac{1}{3}(\frac{33}{7}ln|x+2|+4ln|x-\frac{1}{3}|)+C I = x + 3 1 ∫ ( x + 2 7 33 + x − 3 1 4 ) d x = = x + 3 1 ( 7 33 l n ∣ x + 2∣ + 4 l n ∣ x − 3 1 ∣ ) + C
3
∫ sin − 1 x x 2 − 4 d x = 1 8 ( − 2 i ( L i 2 ( i ( − 2 + 3 ) e − i sin − 1 x ) + + L i 2 ( − i ( 2 + 3 ) e − i sin − 1 x ) ) + + 2 i ( L i 2 ( − i ( − 2 + 3 ) e − i sin − 1 x ) + + L i 2 ( − i ( 2 + 3 ) e − i sin − 1 x ) ) + + ( − 2 sin − 1 x + π + 4 s i n − 1 3 2 ) ⋅ ⋅ log ( 1 − i ( 3 − 2 ) e − i sin − 1 x ) + + ( − 2 sin − 1 x + π + 4 s i n − 1 3 2 ) ⋅ ⋅ log ( 1 + i ( 3 + 2 ) e − i sin − 1 x ) + + log ( x − 2 ) ( π − 2 sin − 1 x ) + + 2 log ( x − 2 ) sin − 1 x − − log ( x + 2 ) ( π − 2 sin − 1 x ) − − 2 log ( x + 2 ) sin − 1 x − − log ( 1 + i ( 3 − 2 ) e − i sin − 1 x ) ⋅ ⋅ ( − 2 sin − 1 x + π − 4 i sinh − 1 1 2 ) − − − log ( 1 − i ( 3 + 2 ) e − i sin − 1 x ) ⋅ ⋅ ( − 2 sin − 1 x + π + 4 i sinh − 1 1 2 ) + + 8 i s i n − 1 3 2 tan − 1 ( cot ( 1 4 ( 2 sin − 1 x + π ) ) 3 ) − − 8 sinh − 1 1 2 tan − 1 ( 3 cot ( 1 4 ( 2 sin − 1 x + π ) ) ) ) + c \int\frac{\sin^{-1}x}{x^2-4}dx=\frac{1}{8}(-2i(Li_2(i(-2+\sqrt{3})e^{-i\sin^{-1}x})+\\
+Li_2(-i(2+\sqrt{3})e^{-i\sin^{-1}x}))+\\
+2i(Li_2(-i(-2+\sqrt{3})e^{-i\sin^{-1}x})+\\
+Li_2(-i(2+\sqrt{3})e^{-i\sin^{-1}x}))+\\
+(-2\sin^{-1}x+\pi+4sin^{-1}\sqrt{\frac{3}{2}})\cdot\\
\cdot \log(1-i(\sqrt{3}-2)e^{-i\sin^{-1}x})+\\
+(-2\sin^{-1}x+\pi+4sin^{-1}\sqrt{\frac{3}{2}})\cdot\\
\cdot \log(1+i(\sqrt{3}+2)e^{-i\sin^{-1}x})+\\
+\log(x-2)(\pi-2\sin^{-1}x)+\\
+2\log(x-2)\sin^{-1}x-\\
-\log(x+2)(\pi-2\sin^{-1}x)-\\
-2\log(x+2)\sin^{-1}x-\\
-\log(1+i(\sqrt{3}-2)e^{-i\sin^{-1}x})\cdot\\
\cdot(-2\sin^{-1}x+\pi-4i\sinh^{-1}\frac{1}{\sqrt{2}})-\\
--\log(1-i(\sqrt{3}+2)e^{-i\sin^{-1}x})\cdot\\
\cdot(-2\sin^{-1}x+\pi+4i\sinh^{-1}\frac{1}{\sqrt{2}})+\\
+8isin^{-1}\sqrt{\frac{3}{2}} \tan^{-1}(\frac{\cot(\frac{1}{4}(2\sin^{-1}x+\pi))}{\sqrt{3}})-\\
- 8\sinh^{-1}\frac{1}{\sqrt{2}} \tan^{-1}(\sqrt{3}\cot(\frac{1}{4}(2\sin^{-1}x+\pi))))+c ∫ x 2 − 4 s i n − 1 x d x = 8 1 ( − 2 i ( L i 2 ( i ( − 2 + 3 ) e − i s i n − 1 x ) + + L i 2 ( − i ( 2 + 3 ) e − i s i n − 1 x )) + + 2 i ( L i 2 ( − i ( − 2 + 3 ) e − i s i n − 1 x ) + + L i 2 ( − i ( 2 + 3 ) e − i s i n − 1 x )) + + ( − 2 sin − 1 x + π + 4 s i n − 1 2 3 ) ⋅ ⋅ log ( 1 − i ( 3 − 2 ) e − i s i n − 1 x ) + + ( − 2 sin − 1 x + π + 4 s i n − 1 2 3 ) ⋅ ⋅ log ( 1 + i ( 3 + 2 ) e − i s i n − 1 x ) + + log ( x − 2 ) ( π − 2 sin − 1 x ) + + 2 log ( x − 2 ) sin − 1 x − − log ( x + 2 ) ( π − 2 sin − 1 x ) − − 2 log ( x + 2 ) sin − 1 x − − log ( 1 + i ( 3 − 2 ) e − i s i n − 1 x ) ⋅ ⋅ ( − 2 sin − 1 x + π − 4 i sinh − 1 2 1 ) − − − log ( 1 − i ( 3 + 2 ) e − i s i n − 1 x ) ⋅ ⋅ ( − 2 sin − 1 x + π + 4 i sinh − 1 2 1 ) + + 8 i s i n − 1 2 3 tan − 1 ( 3 c o t ( 4 1 ( 2 s i n − 1 x + π )) ) − − 8 sinh − 1 2 1 tan − 1 ( 3 cot ( 4 1 ( 2 sin − 1 x + π )))) + c
sin − 1 x \sin^{-1}x sin − 1 x is the inverse sine function
L i n x Li_nx L i n x isthe polylogarithm function
4
∫ 6 − x x 2 − 4 d x = ∫ 6 x 2 − 4 d x − ∫ x x 2 − 4 d x = = 6 ⋅ 1 4 ln ∣ x − 2 x + 2 ∣ − 1 2 ∫ d ( x 2 − 4 ) x 2 − 4 d x = = 3 2 ln ∣ x − 2 x + 2 ∣ − 1 2 ln ∣ x 2 − 4 ∣ + C \int\frac{6-x}{x^2-4}dx=\int\frac{6}{x^2-4}dx-\int\frac{x}{x^2-4}dx=\\
=6\cdot\frac{1}{4}\ln|\frac{x-2}{x+2}| -\frac{1}{2}\int\frac{d(x^2-4)}{x^2-4}dx=\\
=\frac{3}{2}\ln|\frac{x-2}{x+2}| -\frac{1}{2}\ln|x^2-4|+C ∫ x 2 − 4 6 − x d x = ∫ x 2 − 4 6 d x − ∫ x 2 − 4 x d x = = 6 ⋅ 4 1 ln ∣ x + 2 x − 2 ∣ − 2 1 ∫ x 2 − 4 d ( x 2 − 4 ) d x = = 2 3 ln ∣ x + 2 x − 2 ∣ − 2 1 ln ∣ x 2 − 4∣ + C
5
I = ∫ ( x 2 + 1 ) 3 x + 2 d x = ∫ x 6 + 3 x 4 + 3 x 2 + 1 x + 2 d x I=\int\frac{(x^2+1)^3}{x+2}dx=\int\frac{x^6+3x^4+3x^2+1}{x+2}dx I = ∫ x + 2 ( x 2 + 1 ) 3 d x = ∫ x + 2 x 6 + 3 x 4 + 3 x 2 + 1 d x
decompose the numerator by degrees x + 2 x+2 x + 2
1 0 3 0 3 0 1 − 2 1 − 2 7 − 14 31 − 62 125 − 2 1 − 4 15 − 44 119 − 300 − 2 1 − 6 27 − 98 315 − 2 1 − 8 43 − 184 − 2 1 − 10 63 − 2 1 − 12 − 2 1 \begin{matrix}
& 1&0&3&0&3&0&1 \\
-2 & 1&-2&7&-14&31&-62&125\\
-2&1&-4&15&-44&119&-300\\
-2&1&-6&27&-98&315\\
-2&1&-8&43&-184\\
-2&1&-10&63\\
-2&1&-12\\
-2&1
\end{matrix} − 2 − 2 − 2 − 2 − 2 − 2 − 2 1 1 1 1 1 1 1 1 0 − 2 − 4 − 6 − 8 − 10 − 12 3 7 15 27 43 63 0 − 14 − 44 − 98 − 184 3 31 119 315 0 − 62 − 300 1 125
then
( x + 2 ) 6 − 12 ( x + 2 ) 5 + 63 ( x + 2 ) 4 − − 184 ( x + 2 ) 3 + 315 ( x + 2 ) 2 − 300 ( x + 2 ) + 125 (x+2)^6-12(x+2)^5+63(x+2)^4-\\
-184(x+2)^3+315(x+2)^2-300(x+2)+125 ( x + 2 ) 6 − 12 ( x + 2 ) 5 + 63 ( x + 2 ) 4 − − 184 ( x + 2 ) 3 + 315 ( x + 2 ) 2 − 300 ( x + 2 ) + 125
I = ∫ ( x + 2 ) 6 − 12 ( x + 2 ) 5 + 63 ( x + 2 ) 4 − 184 ( x + 2 ) 3 + 315 ( x + 2 ) 2 − 300 ( x + 2 ) + 125 x + 2 d x = = ∫ ( ( x + 2 ) 5 − 12 ( x + 2 ) 4 + 63 ( x + 2 ) 3 − − 184 ( x + 2 ) 2 + 315 ( x + 2 ) − 300 + 125 x + 2 ) d x = = ( x + 2 ) 6 6 − 12 ⋅ ( x + 2 ) 5 5 + 63 ⋅ ( x + 2 ) 4 4 − − 184 ⋅ ( x + 2 ) 3 3 + 315 ⋅ ( x + 2 ) 2 2 − 300 x + + 125 l n ∣ x + 2 ∣ + C I=\int\frac{(x+2)^6-12(x+2)^5+63(x+2)^4-184(x+2)^3+315(x+2)^2-300(x+2)+125}{x+2}dx=\\
=\int((x+2)^5-12(x+2)^4+63(x+2)^3-\\
-184(x+2)^2+315(x+2)-300+\frac{125}{x+2})dx=\\
=\frac{(x+2)^6}{6}-12\cdot\frac{(x+2)^5}{5}+63\cdot\frac{(x+2)^4}{4}-\\
-184\cdot\frac{(x+2)^3}{3}+315\cdot\frac{(x+2)^2}{2}-300x+\\
+125ln|x+2|+C I = ∫ x + 2 ( x + 2 ) 6 − 12 ( x + 2 ) 5 + 63 ( x + 2 ) 4 − 184 ( x + 2 ) 3 + 315 ( x + 2 ) 2 − 300 ( x + 2 ) + 125 d x = = ∫ (( x + 2 ) 5 − 12 ( x + 2 ) 4 + 63 ( x + 2 ) 3 − − 184 ( x + 2 ) 2 + 315 ( x + 2 ) − 300 + x + 2 125 ) d x = = 6 ( x + 2 ) 6 − 12 ⋅ 5 ( x + 2 ) 5 + 63 ⋅ 4 ( x + 2 ) 4 − − 184 ⋅ 3 ( x + 2 ) 3 + 315 ⋅ 2 ( x + 2 ) 2 − 300 x + + 125 l n ∣ x + 2∣ + C
Comments
Dear Patrick Kariuki, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Splendid as always. Your expertise is forever astounding as is your help! Thanks!