Question #104047
Integrate (7x+8)/(2x²+11x+5)dx
Integrate (3x²+18x+3)/(3x²+5x-2)dx
Integrate (6x²)/(x²-4)dx
Integrate (sin inverse x) /(x²-4)dx
Integrate (x²+1)³/(x+2)dx
1
Expert's answer
2020-03-02T09:26:11-0500
  1. I=7x+82x2+11x+5dxI=\int\frac{7x+8}{2x^2+11x+5}dx

decompose the denominator into factors

2x2+11x+5=2(x+5)(x+0.5)2x2+11x+5=0D=121425=81x1=1194=5x2=11+94=0.52x^2+11x+5=2(x+5)(x+0.5)\\ 2x^2+11x+5=0\\ D=121-4\cdot2\cdot5=81\\ x_1=\frac{-11-9}{4}=-5\\ x_2=\frac{-11+9}{4}=-0.5

I=7x+82(x+5)(x+0.5)dx==127x+8(x+5)(x+0.5)dxI=\int\frac{7x+8}{2(x+5)(x+0.5)}dx=\\ =\frac{1}{2}\int\frac{7x+8}{(x+5)(x+0.5)}dx

decompose into simple fractions

7x+8(x+5)(x+0.5)=A(x+5)+B(x+0.5)=A(x+0.5)+B(x+5)(x+5)(x+0.5)1)x=5:7(5)+8=A(5+0.5)A=62)x=0.57(0.5)+8=B(0.5+5)B=1\frac{7x+8}{(x+5)(x+0.5)}=\frac{A}{(x+5)}+\frac{B}{(x+0.5)}=\frac{A(x+0.5)+B(x+5)}{(x+5)(x+0.5)}\\ 1) x=-5: \\ 7\cdot(-5)+8=A(-5+0.5)\\ A=6\\ 2) x=-0.5\\ 7\cdot(-0.5)+8=B(-0.5+5)\\ B=1

I=12(6x+5+1x+0.5)dx==12(6lnx+5+lnx+0.5)+CI=\frac{1}{2}\int(\frac{6}{x+5}+\frac{1}{x+0.5})dx=\\ =\frac{1}{2}(6ln|x+5|+ln|x+0.5|)+C


2

I=3x2+18x+33x2+5x2dxI=\int\frac{3x^2+18x+3}{3x^2+5x-2}dx

perform the division and decompose the denominator into factors

3x2+18x+33x2+5x23x2+5x2113x+53x2+18x+33x2+5x2=1+13x+53x2+5x23x2+5x2=3(x+2)(x13)3x2+5x2=0D=25+432=49x1=576=2x2=5+76=13\begin{matrix} 3x^2+18x+3| & 3x^2+5x-2 \\ 3x^2+5x-2 & 1\\ -----\\ 13x+5\\ \end{matrix}\\ \frac{3x^2+18x+3 }{3x^2+5x-2} =1+\frac{13x+5}{3x^2+5x-2 }\\ 3x^2+5x-2 =3(x+2)(x-\frac{1}{3})\\ 3x^2+5x-2 =0\\ D=25+4\cdot3\cdot2=49\\ x_1=\frac{-5-7}{6}=-2\\ x_2=\frac{-5+7}{6}=\frac{1}{3}

I=(1+13x+53(x+2)(x13))dx==x+1313x+5(x+2)(x13)I=\int(1+\frac{13x+5}{3(x+2)(x-\frac{1}{3})})dx=\\ =x+\frac{1}{3}\int\frac{13x+5}{(x+2)(x-\frac{1}{3})}

decompose into simple fractions

13x+5(x+2)(x13)=A(x+2)+B(x13)=A(x13)+B(x+2)(x+2)(x13)1)x=2:13(2)+5=A(213)A=3372)x=131313+5=B(13+2)B=4\frac{13x+5}{(x+2)(x-\frac{1}{3})}=\frac{A}{(x+2)}+\frac{B}{(x-\frac{1}{3})}=\frac{A(x-\frac{1}{3})+B(x+2)}{(x+2)(x-\frac{1}{3})}\\ 1) x=-2: \\ 13\cdot(-2)+5=A(-2-\frac{1}{3})\\ A=\frac{33}{7}\\ 2) x=\frac{1}{3}\\ 13\cdot\frac{1}{3}+5=B(\frac{1}{3}+2)\\ B=4

I=x+13(337x+2+4x13)dx==x+13(337lnx+2+4lnx13)+CI=x+\frac{1}{3}\int(\frac{\frac{33}{7}}{x+2}+\frac{4}{x-\frac{1}{3}})dx=\\ =x+\frac{1}{3}(\frac{33}{7}ln|x+2|+4ln|x-\frac{1}{3}|)+C



3

sin1xx24dx=18(2i(Li2(i(2+3)eisin1x)++Li2(i(2+3)eisin1x))++2i(Li2(i(2+3)eisin1x)++Li2(i(2+3)eisin1x))++(2sin1x+π+4sin132)log(1i(32)eisin1x)++(2sin1x+π+4sin132)log(1+i(3+2)eisin1x)++log(x2)(π2sin1x)++2log(x2)sin1xlog(x+2)(π2sin1x)2log(x+2)sin1xlog(1+i(32)eisin1x)(2sin1x+π4isinh112)log(1i(3+2)eisin1x)(2sin1x+π+4isinh112)++8isin132tan1(cot(14(2sin1x+π))3)8sinh112tan1(3cot(14(2sin1x+π))))+c\int\frac{\sin^{-1}x}{x^2-4}dx=\frac{1}{8}(-2i(Li_2(i(-2+\sqrt{3})e^{-i\sin^{-1}x})+\\ +Li_2(-i(2+\sqrt{3})e^{-i\sin^{-1}x}))+\\ +2i(Li_2(-i(-2+\sqrt{3})e^{-i\sin^{-1}x})+\\ +Li_2(-i(2+\sqrt{3})e^{-i\sin^{-1}x}))+\\ +(-2\sin^{-1}x+\pi+4sin^{-1}\sqrt{\frac{3}{2}})\cdot\\ \cdot \log(1-i(\sqrt{3}-2)e^{-i\sin^{-1}x})+\\ +(-2\sin^{-1}x+\pi+4sin^{-1}\sqrt{\frac{3}{2}})\cdot\\ \cdot \log(1+i(\sqrt{3}+2)e^{-i\sin^{-1}x})+\\ +\log(x-2)(\pi-2\sin^{-1}x)+\\ +2\log(x-2)\sin^{-1}x-\\ -\log(x+2)(\pi-2\sin^{-1}x)-\\ -2\log(x+2)\sin^{-1}x-\\ -\log(1+i(\sqrt{3}-2)e^{-i\sin^{-1}x})\cdot\\ \cdot(-2\sin^{-1}x+\pi-4i\sinh^{-1}\frac{1}{\sqrt{2}})-\\ --\log(1-i(\sqrt{3}+2)e^{-i\sin^{-1}x})\cdot\\ \cdot(-2\sin^{-1}x+\pi+4i\sinh^{-1}\frac{1}{\sqrt{2}})+\\ +8isin^{-1}\sqrt{\frac{3}{2}} \tan^{-1}(\frac{\cot(\frac{1}{4}(2\sin^{-1}x+\pi))}{\sqrt{3}})-\\ - 8\sinh^{-1}\frac{1}{\sqrt{2}} \tan^{-1}(\sqrt{3}\cot(\frac{1}{4}(2\sin^{-1}x+\pi))))+c

sin1x\sin^{-1}x is the inverse sine function

LinxLi_nx isthe polylogarithm function



4

6xx24dx=6x24dxxx24dx==614lnx2x+212d(x24)x24dx==32lnx2x+212lnx24+C\int\frac{6-x}{x^2-4}dx=\int\frac{6}{x^2-4}dx-\int\frac{x}{x^2-4}dx=\\ =6\cdot\frac{1}{4}\ln|\frac{x-2}{x+2}| -\frac{1}{2}\int\frac{d(x^2-4)}{x^2-4}dx=\\ =\frac{3}{2}\ln|\frac{x-2}{x+2}| -\frac{1}{2}\ln|x^2-4|+C





5

I=(x2+1)3x+2dx=x6+3x4+3x2+1x+2dxI=\int\frac{(x^2+1)^3}{x+2}dx=\int\frac{x^6+3x^4+3x^2+1}{x+2}dx

decompose the numerator by degrees x+2x+2

103030121271431621252141544119300216279831521843184211063211221\begin{matrix} & 1&0&3&0&3&0&1 \\ -2 & 1&-2&7&-14&31&-62&125\\ -2&1&-4&15&-44&119&-300\\ -2&1&-6&27&-98&315\\ -2&1&-8&43&-184\\ -2&1&-10&63\\ -2&1&-12\\ -2&1 \end{matrix}

then

(x+2)612(x+2)5+63(x+2)4184(x+2)3+315(x+2)2300(x+2)+125(x+2)^6-12(x+2)^5+63(x+2)^4-\\ -184(x+2)^3+315(x+2)^2-300(x+2)+125

I=(x+2)612(x+2)5+63(x+2)4184(x+2)3+315(x+2)2300(x+2)+125x+2dx==((x+2)512(x+2)4+63(x+2)3184(x+2)2+315(x+2)300+125x+2)dx==(x+2)6612(x+2)55+63(x+2)44184(x+2)33+315(x+2)22300x++125lnx+2+CI=\int\frac{(x+2)^6-12(x+2)^5+63(x+2)^4-184(x+2)^3+315(x+2)^2-300(x+2)+125}{x+2}dx=\\ =\int((x+2)^5-12(x+2)^4+63(x+2)^3-\\ -184(x+2)^2+315(x+2)-300+\frac{125}{x+2})dx=\\ =\frac{(x+2)^6}{6}-12\cdot\frac{(x+2)^5}{5}+63\cdot\frac{(x+2)^4}{4}-\\ -184\cdot\frac{(x+2)^3}{3}+315\cdot\frac{(x+2)^2}{2}-300x+\\ +125ln|x+2|+C



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
02.03.20, 18:26

Dear Patrick Kariuki, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Patrick Kariuki
02.03.20, 18:23

Splendid as always. Your expertise is forever astounding as is your help! Thanks!

LATEST TUTORIALS
APPROVED BY CLIENTS