Option 1) The series
"\\quad \\quad \\quad \\quad \\quad \\quad \\sum _{ n=1 }^{ \\infty }{ { n }^{ 2 }{ x }^{ n } } \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\ (1)"
is a power series , the radius of convergence of which is
"r=\\ \\lim _{ n\\rightarrow \\infty }{ \\frac { { n }^{ 2 } }{ { (n+1) }^{ 2 } } } =1"
"\\forall \\ n\\ge 1\\quad and\\quad \\forall x\\in \\left[ 0,\\frac { 1 }{ 5 } \\right] :\\ 0\\le { n }^{ 2 }{ x }^{ n }\\le \\frac { { n }^{ 2 } }{ { 5 }^{ n } } \\ \\quad \\quad \\quad \\quad \\ \\quad (2)"
The series (1) converges in the interval "(-1,1)". The point "x=\\frac{1}{5}" belongs to "(-1,1)". Consequently series
"\\quad\\quad \\quad\\quad\\quad\\quad\\quad\\sum _{ n=1 }^{ \\infty }{ \\frac { { n }^{ 2 } }{ { 5 }^{ n } } } \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad\\quad\\quad\\quad\\quad\\ (3)"
is convergent. According to the Weierstrass' M-Test , the series "\\sum _{ n=1 }^{ \\infty }{ { n }^{ 2 }{ x }^{ n } }"
converges uniformly in the interval "\\left[ 0,\\frac { 1 }{ 5 } \\right]" .
Option 2) The convergence of series (3) can be proved by the d'Alembert criterion
"{ a }_{ n }:=\\frac { { n }^{ 2 } }{ { 5 }^{ n } } ,\\lim _{ n\\rightarrow \\infty }{ \\frac { { a }_{ n+1 } }{ { a }_{ n } } } =\\lim _{ n\\rightarrow \\infty }{ \\frac { { (n+1) }^{ 2 } }{ { 5 }^{ n+1 } } \\cdot \\frac { { 5 }^{ n } }{ { n }^{ 2 } } } =\\frac { 1 }{ 5 } <1"
Given the fulfillment of (2), according to the Weierstrass' M-Test, we obtain the series (1) converges uniformly in the interval "[0,\\frac{1}{5}]" .
Comments
Leave a comment