Question #103851
Prove that between any two real roots of the equation
2e^2xsin3x-3=0

There is at least one real root of the equation
e^2xcos3x+1=0
1
Expert's answer
2020-03-02T08:55:05-0500

We consider the following function:

f(x)=13sin3x12e2xf(x)=\frac{1}{3}\sin 3x -\frac{1}2{}e^{-2x}


sin3x\sin 3x and e2xe^{-2x} are continuous and differentiable for all real xx  f(x)\Rightarrow \ f(x) is continuous and differentiable for all real x.x.


Suppose, that aa and bb (a<b)a<b) are real roots of 2e2xsin3x3=02e^{2x}\sin 3x-3=0 .

2e2xsin3x3=6e2x(13sin3x12e2x)=02e^{2x}\sin 3x-3=6e^{2x}(\frac{1}{3}\sin3x-\frac{1}{2} e^{-2x})=0

e2xe^{2x} 013sin3x12e2x=0.\ 0 \Rightarrow \frac{1}{3}\sin3x-\frac{1}{2}e^{-2x}=0.


So, if aa and bb are roots of 2e2xsin3x3=02e^{2x}\sin 3x-3=0 , then aa and bb are roots of f(x)=0f(x)=0 ,

i.e. f(a)=f(b)=0.f(a)=f(b)=0.


Now we can use Rolle’s Theorem:

f(x)f(x) is continuous in [a,b][a,b] , differentiable in (a,b)(a,b) ,  f(a)=f(b)=0.\ f(a)=f(b)=0.

Therefore,  c(a,b): f(c)=0\exists \ c\in(a,b): \ f^\prime (c)=0 .

f(c)=cos(3c)+e2c=0 e2ccos3c+1=0f^\prime (c)=\cos(3c)+e^{-2c}=0 \ \Rightarrow e^{2c}\cos3c+1=0


So, for all real roots (aa and b)b) of 2e2xsin3x3=02e^{2x}\sin 3x-3=0 , there is c(a,b):e2ccos3c+1=0c\in(a,b) : e^{2c}\cos3c+1=0 .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS