Answer to Question #103879 in Calculus for Martin

Question #103879
(1 point) Find d2ydx2 for
y=csc(x)
d2ydx2=
1
Expert's answer
2020-02-26T10:41:02-0500

y=csc(x)=1/sin(x)=sin1(x)y=csc(x)=1/sin(x)=sin^{-1}(x)


using (f(g(x)))=f(g(x))g(x)(f(g(x)))'=f'(g(x))*g'(x)


y=(1)sin2(x)cos(x)y'=(-1)*sin^{-2}(x) *cos(x)


using f(g(x))=f(g(x))g(x)f(g(x))'=f'(g(x))*g'(x) and (fg)=fg+gf(fg)'=f'g+g'f


y=(1)[(2)sin3(x)cos(x)cos(x)+sin2(x)(sin(x))]y''=(-1)* [ (-2)sin^{-3}(x) *cos(x)*cos(x) + sin^{-2}(x) *(-sin(x))]


simplify:


y=2cot2(x)csc(x)+csc(x)y''=2cot^2(x)csc(x)+csc(x)


alternate form:


y=csc(x)(cot2(x)+csc2(x))y''=csc(x) (cot^2(x) + csc^2(x))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment