∫0π2(1+2cosx)dx=∫0π21dx+2∫0π2cosxdx=(x+2sinx)|0π2=\intop_{0}^{\frac {\pi}2} (1+2cosx)dx= \intop_{0}^{\frac {\pi}2} 1dx +2\intop_{0}^{\frac {\pi}2} cosxdx= (x + 2sinx)\text{\textbar}_0^{\frac{\pi}2}=∫02π(1+2cosx)dx=∫02π1dx+2∫02πcosxdx=(x+2sinx)|02π=
π2+2sin(π2)−0−2sin(0)=π2+2\frac {\pi}2 +2 sin(\frac {\pi}2) - 0- 2 sin(0) = \frac {\pi}2 +22π+2sin(2π)−0−2sin(0)=2π+2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment