Answer to Question #97564 in Analytic Geometry for Ojugbele Daniel

Question #97564
Vector a= 2i+2j+3k
Vector b=i+2j+k
Vector c= 3i+j
Are such that a+yb is perpendicular to c find y.
1
Expert's answer
2019-11-01T15:10:56-0400

Find the vector yby\overrightarrow{b}:


yb=yi+2yj+yky\overrightarrow{b}=y\overrightarrow{i}+2y\overrightarrow{j}+y\overrightarrow{k}

Tnen


a+yb=(2i+2j+3k)+(yi+2yj+yk)\overrightarrow{a}+y\overrightarrow{b}=(2\overrightarrow{i}+2\overrightarrow{j}+3\overrightarrow{k})+(y\overrightarrow{i}+2y\overrightarrow{j}+y\overrightarrow{k})a+yb=(2+y)i+(2+2y)j+(3+y)k\overrightarrow{a}+y\overrightarrow{b}=(2+y)\overrightarrow{i}+(2+2y)\overrightarrow{j}+(3+y)\overrightarrow{k}

If a+yb\overrightarrow{a}+y\overrightarrow{b} is perpendicular to c\overrightarrow{c} , then their dot product is equal to zero:


(2+y)3+(2+2y)1+(3+y)0=0(2+y)\cdot 3+(2+2y)\cdot 1+(3+y)\cdot 0=0

Simplify:


6+3y+2+2y=06+3y+2+2y=05y+8=05y+8=0y=85y=-\frac{8}{5}y=1.6y=-1.6

Answer: -1.6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment