Let ABC be the triangle where A(x1, y1), B(x2, y2) and C(x3, y3):
Let G be the centroid of triangle ABC.
Let AD be the median of triangle ABC. So, D is the midpoint of BC.
Midpoint of B(x2, y2) and C(x3, y3) is
"D= (\\frac {x_2 +x_3} {2},\\frac {y_2 +y_3} {2})"
We know that centroid divides median in the ratio 2:1. So, centroid G divides the median AD in the ratio 2:1.
We know that coordinate of point P(x, y) that divides the line segment joining internally in the ratio m:n is
"P(x,y)= (\\frac {mx_2 +nx_1} {m+n},\\frac {my_2 +ny_1} {m+n})"
Here,
"x_1=x_1" ,
"y_1=y_1" ,
"x_2=\\frac{x_2+x_3}{2}" ,
"y_2=\\frac{y_2+y_3}{2}" ,
"m=2" ,
"n=1"
Coordinate of G are
"G(x,y)= \\frac {2 (\\frac {x_2+x_3}{2}) +1(x_1)}{2+1},\\frac {2 (\\frac {y_2+y_3}{2}) +1(y_1)}{2+1} \n=(\\frac {x_2+x_3+x_1}{3},\\frac {y_2+y_3+y_1}{3})"
Hence Coordinate of centroid are
"G(x,y)=(\\frac {x_1+x_2+x_3}{3},\\frac {y_1+y_2+y_3}{3})"
Comments
Leave a comment