Question #97211
What are the coordinates of the centroid of the triangle with vertices (X1,Y1), (X2,Y2), (X3 ,Y3)
1
Expert's answer
2019-10-24T09:29:25-0400

Let ABC be the triangle where A(x1, y1), B(x2, y2) and C(x3, y3):





Let G be the centroid of triangle ABC.

Let AD be the median of triangle ABC. So, D is the midpoint of BC.

Midpoint of B(x2, y2) and C(x3, y3) is

D=(x2+x32,y2+y32)D= (\frac {x_2 +x_3} {2},\frac {y_2 +y_3} {2})

We know that centroid divides median in the ratio 2:1. So, centroid G divides the median AD in the ratio 2:1.

We know that coordinate of point P(x, y) that divides the line segment joining  internally in the ratio m:n is

P(x,y)=(mx2+nx1m+n,my2+ny1m+n)P(x,y)= (\frac {mx_2 +nx_1} {m+n},\frac {my_2 +ny_1} {m+n})

Here,

x1=x1x_1=x_1 ,

y1=y1y_1=y_1 ,

x2=x2+x32x_2=\frac{x_2+x_3}{2} ,

y2=y2+y32y_2=\frac{y_2+y_3}{2} ,

m=2m=2 ,

n=1n=1

Coordinate of G are

G(x,y)=2(x2+x32)+1(x1)2+1,2(y2+y32)+1(y1)2+1=(x2+x3+x13,y2+y3+y13)G(x,y)= \frac {2 (\frac {x_2+x_3}{2}) +1(x_1)}{2+1},\frac {2 (\frac {y_2+y_3}{2}) +1(y_1)}{2+1} =(\frac {x_2+x_3+x_1}{3},\frac {y_2+y_3+y_1}{3})

Hence Coordinate of centroid are

G(x,y)=(x1+x2+x33,y1+y2+y33)G(x,y)=(\frac {x_1+x_2+x_3}{3},\frac {y_1+y_2+y_3}{3})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS