Point B lies on the line segment AC. Let it divide the line segment in the ratio, "k:1" , thus
"AB\/BC=k"
Using the formula, coordinates of "B=(x,y)" are given by
"(x,y)=((kx\u2082 + x\u2081)\/(k+1), (ky\u2082 + y\u2081)\/(k+1))"
where
"A=(x\u2081, y\u2081)=(-1,-3.5)" ;
"C=(x\u2082, y\u2082)=(5,-1)"
Given : "B=(x,y)=(0.2,-3)"
Solving the x-coordinate for k; we get;
"0.2=(k*5 +(-1))\/(k+1)"
"=(5k-1)\/(k+1)"
"\\implies k+1=25k-5"
"\\implies 24k=6"
"\\therefore k=1\/4"
AB/BC=0.25 (Answer)
Comments
Leave a comment