Point B lies on the line segment AC. Let it divide the line segment in the ratio, k:1 , thus
AB/BC=k
Using the formula, coordinates of B=(x,y) are given by
(x,y)=((kx2+x1)/(k+1),(ky2+y1)/(k+1))
where
A=(x1,y1)=(−1,−3.5) ;
C=(x2,y2)=(5,−1)
Given : B=(x,y)=(0.2,−3)
Solving the x-coordinate for k; we get;
0.2=(k∗5+(−1))/(k+1)
=(5k−1)/(k+1)
⟹k+1=25k−5
⟹24k=6
∴k=1/4
AB/BC=0.25 (Answer)
Comments