Align both vectors along the X-axis of cartesian coordinates. Let the vector a a a be directed in a positive direction. Then we can write:
a = ( a x , 0 , 0 , … , 0 ) a=(a_x,0,0,\dots,0)\\ a = ( a x , 0 , 0 , … , 0 )
b = ( b x , 0 , 0 , … , 0 ) b=(b_x,0,0,\dots,0)\\ b = ( b x , 0 , 0 , … , 0 )
If vectors are in the opposite direction, then ∣ a ∣ = a x > 0 , ∣ b ∣ = − b x > 0. |a| = a_x>0, |b| = -b_x >0.\\ ∣ a ∣ = a x > 0 , ∣ b ∣ = − b x > 0.
∣ a − b ∣ = ∣ ( a x − b x , 0 , 0 , … , 0 ) ∣ = ( a x − b x ) 2 = |a-b| = |(a_x-b_x,0,0,\dots,0)|=\sqrt{(a_x-b_x)^2}=\\ ∣ a − b ∣ = ∣ ( a x − b x , 0 , 0 , … , 0 ) ∣ = ( a x − b x ) 2 =
a x − b x = ∣ a ∣ + ∣ b ∣ . a_x-b_x=|a|+|b|.\\ a x − b x = ∣ a ∣ + ∣ b ∣.
If vectors are in the same direction, then ∣ a ∣ = a x > 0 , ∣ b ∣ = b x > 0. |a| = a_x>0, |b| = b_x >0.\\ ∣ a ∣ = a x > 0 , ∣ b ∣ = b x > 0.
∣ a + b ∣ = ∣ ( a x + b x , 0 , 0 , … , 0 ) ∣ = ( a x + b x ) 2 = |a+b| = |(a_x+b_x,0,0,\dots,0)|=\sqrt{(a_x+b_x)^2}=\\ ∣ a + b ∣ = ∣ ( a x + b x , 0 , 0 , … , 0 ) ∣ = ( a x + b x ) 2 =
a x + b x = ∣ a ∣ + ∣ b ∣ . a_x+b_x=|a|+|b|.\\ a x + b x = ∣ a ∣ + ∣ b ∣.
Comments