Align both vectors along the X-axis of cartesian coordinates. Let the vector aaa be directed in a positive direction. Then we can write:
a=(ax,0,0,…,0)a=(a_x,0,0,\dots,0)\\a=(ax,0,0,…,0)
b=(bx,0,0,…,0)b=(b_x,0,0,\dots,0)\\b=(bx,0,0,…,0)
If vectors are in the opposite direction, then ∣a∣=ax>0,∣b∣=−bx>0.|a| = a_x>0, |b| = -b_x >0.\\∣a∣=ax>0,∣b∣=−bx>0.
∣a−b∣=∣(ax−bx,0,0,…,0)∣=(ax−bx)2=|a-b| = |(a_x-b_x,0,0,\dots,0)|=\sqrt{(a_x-b_x)^2}=\\∣a−b∣=∣(ax−bx,0,0,…,0)∣=(ax−bx)2=
ax−bx=∣a∣+∣b∣.a_x-b_x=|a|+|b|.\\ax−bx=∣a∣+∣b∣.
If vectors are in the same direction, then ∣a∣=ax>0,∣b∣=bx>0.|a| = a_x>0, |b| = b_x >0.\\∣a∣=ax>0,∣b∣=bx>0.
∣a+b∣=∣(ax+bx,0,0,…,0)∣=(ax+bx)2=|a+b| = |(a_x+b_x,0,0,\dots,0)|=\sqrt{(a_x+b_x)^2}=\\∣a+b∣=∣(ax+bx,0,0,…,0)∣=(ax+bx)2=
ax+bx=∣a∣+∣b∣.a_x+b_x=|a|+|b|.\\ax+bx=∣a∣+∣b∣.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments