Question #95428
SHOW THAT THE PLANE AX+BY+CZ+D=0 TOUCHES THE 3X^2-6Y^2+9Z^2+17=0 FIND THE POINT OF CONTACT
1
Expert's answer
2019-10-03T11:55:07-0400

Given hyperboloid

3x26y2+9z2=17dividing by 93x^2-6y^2+9z^2=-17\\dividing\ by\ 9

x232y23+z21=179\frac{x^2}{3} - \frac{2y^2}{3} +\frac{ z^2 }{1} = \frac{- 17}{9}


Tangential plane at any point (a,b,c) is given by(a,b,c)\ is\ given\ by\\

ax32by3+cz=179\frac{ax}{3}-\frac{2by}{3}+cz=\frac{-17}{9}


3ax17+6by179cz17=1    .......(1)\frac{-3ax}{17}+\frac{6by}{17}-\frac{9cz}{17}=1\ \ \ \ .......(1)


Given plane is

Ax+By+Cz=DAx+By+Cz=-D

Or,

AxDByDCzD=1     .......(2)\frac{-Ax}{D}-\frac{By}{D}-\frac{Cz}{D}=1\ \ \ \ \ .......(2)

Comparing coefficient of (1) and (2)(1) \ and\ (2)

We get

a=17A3Da=\frac{17A}{3D}

b=17B6Dc=17C9Db=-\frac{17B}{6D}\\c=\frac{17C}{9D}

So,

Point of contact = (a,b,c)=(17A3D,17B6D,17C9D)(a,b,c)=(\frac{17A}{3D},-\frac{17B}{6D},\frac{17C}{9D})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS