Given hyperboloid
"3x^2-6y^2+9z^2=-17\\\\dividing\\ by\\ 9"
"\\frac{x^2}{3} - \\frac{2y^2}{3} +\\frac{ z^2 }{1} = \\frac{- 17}{9}"
Tangential plane at any point "(a,b,c)\\ is\\ given\\ by\\\\"
"\\frac{ax}{3}-\\frac{2by}{3}+cz=\\frac{-17}{9}"
"\\frac{-3ax}{17}+\\frac{6by}{17}-\\frac{9cz}{17}=1\\ \\ \\ \\ .......(1)"
Given plane is
"Ax+By+Cz=-D"
Or,
"\\frac{-Ax}{D}-\\frac{By}{D}-\\frac{Cz}{D}=1\\ \\ \\ \\ \\ .......(2)"
Comparing coefficient of "(1) \\ and\\ (2)"
We get
"a=\\frac{17A}{3D}"
"b=-\\frac{17B}{6D}\\\\c=\\frac{17C}{9D}"
So,
Point of contact = "(a,b,c)=(\\frac{17A}{3D},-\\frac{17B}{6D},\\frac{17C}{9D})"
Comments
Leave a comment