Let we have two planes given by vectors A = A 1 i + B 1 j + C 1 k A = A_1i+B_1j+C_1k A = A 1 i + B 1 j + C 1 k and B = A 2 i + B 2 j + C 2 k B = A_2i+B_2j+C_2k B = A 2 i + B 2 j + C 2 k .
In our case
A 1 = 2 ; B 1 = 2 ; C 1 = − 1 ; A_1 = 2; B_1 = 2; C_1 = -1; A 1 = 2 ; B 1 = 2 ; C 1 = − 1 ;
A 2 = 6 ; B 2 = − 3 ; C 2 = 2 A_2 = 6; B_2 = -3; C_2 = 2 A 2 = 6 ; B 2 = − 3 ; C 2 = 2
The angle between the planes is equal to the angle between their normal vectors, it is enough to find the angle between the vectors n 1 ( A 1 , B 1 , C 1 ) n_1(A_1,B_1,C_1) n 1 ( A 1 , B 1 , C 1 ) and n 2 ( A 2 , B 2 , C 2 ) n_2(A_2,B_2,C_2) n 2 ( A 2 , B 2 , C 2 ) .
That is
cos ( ϕ ) = A 1 A 2 + B 1 B 2 + C 1 C 2 A 1 2 + B 1 2 + C 1 2 A 2 2 + B 2 2 + C 2 2 \cos(\phi) = \cfrac{A_1A_2 + B_1B_2+C_1C_2 }{\sqrt{A_1^2+B_1^2+C_1^2}\sqrt{A_2^2+B_2^2+C_2^2}} cos ( ϕ ) = A 1 2 + B 1 2 + C 1 2 A 2 2 + B 2 2 + C 2 2 A 1 A 2 + B 1 B 2 + C 1 C 2
cos ( ϕ ) = 2 ∗ 6 + 2 ∗ ( − 3 ) + ( − 1 ) ∗ 2 2 2 + 2 2 + ( − 1 ) 2 6 2 + ( − 3 ) 2 + 2 2 = 4 9 49 = 4 21 ≈ 0.19047619 \cos(\phi) = \cfrac{2*6 + 2*(-3)+(-1)*2 }{\sqrt{2^2+2^2+(-1)^2}\sqrt{6^2+(-3)^2+2^2}} = \cfrac{4}{\sqrt{9}\sqrt{49}} = \cfrac{4}{21} \approx 0.19047619 cos ( ϕ ) = 2 2 + 2 2 + ( − 1 ) 2 6 2 + ( − 3 ) 2 + 2 2 2 ∗ 6 + 2 ∗ ( − 3 ) + ( − 1 ) ∗ 2 = 9 49 4 = 21 4 ≈ 0.19047619
ϕ = arccos ( 0.19047619 ) ≈ 79.0194 ° \phi = \arccos(0.19047619) \approx 79.0194 \degree ϕ = arccos ( 0.19047619 ) ≈ 79.0194°
Answer: the angle between A = 2 i + 2 j − k A=2i+2j-k A = 2 i + 2 j − k and B = 6 i − 3 j + 2 k B=6i-3j+2k B = 6 i − 3 j + 2 k is 79.0194 ° 79.0194 \degree 79.0194° .
Comments