Question #96884
Find the equation of the line which passes through the point (1,√3) and makes anangle of 30◦ with the line x+√3y+√3 = 0.
1
Expert's answer
2019-10-21T10:33:51-0400

The equation of a straight line with gradient m, passing through the point (x1,y1)(x_1, y_1), is 

.

yy1=m(xx1).y − y_1 = m(x − x_1).



Point  A(1,3)A(1,√3) :

y3=m1(x1).y − \sqrt{3}= m_1(x − 1 ).


The equation of the second line


x+3y+3=0.x+\sqrt{3}y+\sqrt{3} = 0.



Or


y=13(x+3)m2=13y = -\frac{1}{\sqrt{3}} (x+\sqrt{3}) \Rightarrow m_2=-\frac{1}{\sqrt{3}}


The angle between the lines:


tan(α)=m2m11m2m1\tan(\alpha)= |\frac{m_2-m_1}{1-m_2m_1} |

then


tan(π6)=13m11+13m113=13m11+13m1m1=0,\tan(\frac{ \pi }{6} )=|\frac{-\frac{1}{\sqrt{3}}-m_1}{1+\frac{1}{\sqrt{3}}m_1} | \Rightarrow \frac{1}{\sqrt{3}}=| \frac{-\frac{1}{\sqrt{3}}-m_1}{1+\frac{1}{\sqrt{3}}m_1} | \Rightarrow m_1=0 , or m1=32m_1=-\frac{\sqrt{3}}{2}



The sought equations:



1)y=3.1) y=\sqrt{3} .

.

and



y3=32(x1)y − \sqrt{3}= -\frac{\sqrt{3}}{2} (x − 1 ) \Rightarrow


2)y=32x+3322) y = -\frac{\sqrt{3}}{2} x +\frac{3\sqrt{3}}{2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS