Let's find the length of AB:
(1) A B = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 AB=\sqrt{\smash[b]{(x_2-x_1)}^{\smash{2}}+{(y_2-y_1)}^{\smash{2}}} A B = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
A B = ( 34 − 16 ) 2 + ( 40 − 4 ) 2 AB=\sqrt{\smash[b]{(34-16)}^{\smash{2}}+{(40-4)}^{\smash{2}}} A B = ( 34 − 16 ) 2 + ( 40 − 4 ) 2
A B = 3 24 + 1296 = 1 620 = 18 ∗ 5 AB=\sqrt{\smash[b]324+1296}=\sqrt{\smash[b]1620}=18*\sqrt{\smash[b]5} A B = 3 24 + 1296 = 1 620 = 18 ∗ 5
Let point L (xL ;yL ) will be a point that partition segment AB in a ratio of 1:5. It means that:
A L = A B ∗ 1 6 AL=AB*\frac{1}{6} A L = A B ∗ 6 1 and B L = A B ∗ 5 6 BL=AB*\frac{5}{6} B L = A B ∗ 6 5
Lengths of segments AL and BL are respectively equal:
(2) A L = ( x A − x L ) 2 + ( y A − y L ) 2 = 18 ∗ ( 5 ) / 6 = 3 ∗ ( 5 ) AL=\sqrt{\smash[b]{(x_A-x_L)}^{\smash{2}}+{(y_A-y_L)}^{\smash{2}}}=18*\sqrt{\smash[b]{(5)}}/6=3*\sqrt{\smash[b]{(5)}} A L = ( x A − x L ) 2 + ( y A − y L ) 2 = 18 ∗ ( 5 ) /6 = 3 ∗ ( 5 )
(3) B L = ( x B − x L ) 2 + ( y B − y L ) 2 = 18 ∗ ( 5 ) ∗ 5 / 6 = 15 ∗ ( 5 ) BL=\sqrt{\smash[b]{(x_B-x_L)}^{\smash{2}}+{(y_B-y_L)}^{\smash{2}}}=18*\sqrt{\smash[b]{(5)}}*5/6=15*\sqrt{\smash[b]{(5)}} B L = ( x B − x L ) 2 + ( y B − y L ) 2 = 18 ∗ ( 5 ) ∗ 5/6 = 15 ∗ ( 5 )
We now coordinates of points A (16;4) and B (34;40):
{ ( 16 − x L ) 2 + ( 4 − y L ) 2 = 3 ∗ ( 5 ) ( 34 − x L ) 2 + ( 40 − y L ) 2 = 15 ∗ ( 5 ) \begin{cases}
\sqrt{\smash[b]{(16-x_L)}^{\smash{2}}+{(4-y_L)}^{\smash{2}}}=3*\sqrt{\smash[b]{(5)}} \\
\sqrt{\smash[b]{(34-x_L)}^{\smash{2}}+{(40-y_L)}^{\smash{2}}}=15*\sqrt{\smash[b]{(5)}}
\end{cases} { ( 16 − x L ) 2 + ( 4 − y L ) 2 = 3 ∗ ( 5 ) ( 34 − x L ) 2 + ( 40 − y L ) 2 = 15 ∗ ( 5 )
{ ( 16 − x L ) 2 + ( 4 − y L ) 2 = 45 ( 34 − x L ) 2 + ( 40 − y L ) 2 = 1125 \begin{cases}
(16-x_L)^{\smash{2}}+(4-y_L)^{\smash{2}}=45 \\
(34-x_L)^{\smash{2}}+(40-y_L)^{\smash{2}}=1125
\end{cases} { ( 16 − x L ) 2 + ( 4 − y L ) 2 = 45 ( 34 − x L ) 2 + ( 40 − y L ) 2 = 1125
{ 256 − 32 ∗ x L + x L 2 + 16 − 8 ∗ y L + y L 2 = 45 1156 − 68 ∗ x L + x L 2 + 1600 − 80 ∗ y L + y L 2 = 1125 \begin{cases}
256-32*x_L+x_L^2+16-8*y_L+y_L^2=45 \\
1156-68*x_L+x_L^2+1600-80*y_L+y_L^2=1125
\end{cases} { 256 − 32 ∗ x L + x L 2 + 16 − 8 ∗ y L + y L 2 = 45 1156 − 68 ∗ x L + x L 2 + 1600 − 80 ∗ y L + y L 2 = 1125
Let's subtract the first equation from the second:
900 − 36 ∗ x L + 1584 − 72 ∗ y L = 1080 900-36*x_L+1584-72*y_L=1080 900 − 36 ∗ x L + 1584 − 72 ∗ y L = 1080
39 − x L − 2 ∗ y L = 0 39-x_L-2*y_L=0 39 − x L − 2 ∗ y L = 0
(4) x L = 39 − 2 ∗ y L x_L=39-2*y_L x L = 39 − 2 ∗ y L
Substitute value of xL in equation (2):
( 16 − 39 + 2 ∗ y L ) 2 + ( 4 − y L ) 2 = 3 ∗ ( 5 ) \sqrt{\smash[b]{(16-39+2*y_L)}^{\smash{2}}+{(4-y_L)}^{\smash{2}}}=3*\sqrt{\smash[b]{(5)}} ( 16 − 39 + 2 ∗ y L ) 2 + ( 4 − y L ) 2 = 3 ∗ ( 5 )
( 2 ∗ y L − 23 ) 2 + ( 4 − y L ) 2 = 45 (2*y_L-23)^{\smash{2}}+(4-y_L)^{\smash{2}}=45 ( 2 ∗ y L − 23 ) 2 + ( 4 − y L ) 2 = 45
4 ∗ y L 2 − 92 ∗ y L + 529 + 16 − 8 ∗ y L + y L 2 − 45 = 0 4*y_L^2-92*y_L+529+16-8*y_L+y_L^2-45=0 4 ∗ y L 2 − 92 ∗ y L + 529 + 16 − 8 ∗ y L + y L 2 − 45 = 0
500 − 100 ∗ y L + 5 ∗ y L 2 = 0 500-100*y_L+5*y_L^2=0 500 − 100 ∗ y L + 5 ∗ y L 2 = 0
100 − 20 ∗ y L + ∗ y L 2 = 0 100-20*y_L+*y_L^2=0 100 − 20 ∗ y L + ∗ y L 2 = 0
( 10 − y L ) 2 = 0 ⟹ y L = 10 (10-y_L)^2=0\implies y_L=10 ( 10 − y L ) 2 = 0 ⟹ y L = 10
Substitute value of yL in equation (4):
x L = 39 − 2 ∗ 10 = 19 x_L=39-2*10=19 x L = 39 − 2 ∗ 10 = 19
Coordinates of point that partitions segment AB in a ratio of 1:5 is (19;10)
Comments