Let's find the length of AB:
(1) "AB=\\sqrt{\\smash[b]{(x_2-x_1)}^{\\smash{2}}+{(y_2-y_1)}^{\\smash{2}}}"
"AB=\\sqrt{\\smash[b]{(34-16)}^{\\smash{2}}+{(40-4)}^{\\smash{2}}}"
"AB=\\sqrt{\\smash[b]324+1296}=\\sqrt{\\smash[b]1620}=18*\\sqrt{\\smash[b]5}"
Let point L (xL;yL) will be a point that partition segment AB in a ratio of 1:5. It means that:
"AL=AB*\\frac{1}{6}" and "BL=AB*\\frac{5}{6}"
Lengths of segments AL and BL are respectively equal:
(2) "AL=\\sqrt{\\smash[b]{(x_A-x_L)}^{\\smash{2}}+{(y_A-y_L)}^{\\smash{2}}}=18*\\sqrt{\\smash[b]{(5)}}\/6=3*\\sqrt{\\smash[b]{(5)}}"
(3) "BL=\\sqrt{\\smash[b]{(x_B-x_L)}^{\\smash{2}}+{(y_B-y_L)}^{\\smash{2}}}=18*\\sqrt{\\smash[b]{(5)}}*5\/6=15*\\sqrt{\\smash[b]{(5)}}"
We now coordinates of points A (16;4) and B (34;40):
"\\begin{cases}\n\\sqrt{\\smash[b]{(16-x_L)}^{\\smash{2}}+{(4-y_L)}^{\\smash{2}}}=3*\\sqrt{\\smash[b]{(5)}} \\\\\n\\sqrt{\\smash[b]{(34-x_L)}^{\\smash{2}}+{(40-y_L)}^{\\smash{2}}}=15*\\sqrt{\\smash[b]{(5)}}\n\\end{cases}"
"\\begin{cases}\n(16-x_L)^{\\smash{2}}+(4-y_L)^{\\smash{2}}=45 \\\\\n(34-x_L)^{\\smash{2}}+(40-y_L)^{\\smash{2}}=1125\n\\end{cases}"
"\\begin{cases}\n256-32*x_L+x_L^2+16-8*y_L+y_L^2=45 \\\\\n1156-68*x_L+x_L^2+1600-80*y_L+y_L^2=1125\n\\end{cases}"
Let's subtract the first equation from the second:
"900-36*x_L+1584-72*y_L=1080"
"39-x_L-2*y_L=0"
(4) "x_L=39-2*y_L"
Substitute value of xL in equation (2):
"\\sqrt{\\smash[b]{(16-39+2*y_L)}^{\\smash{2}}+{(4-y_L)}^{\\smash{2}}}=3*\\sqrt{\\smash[b]{(5)}}"
"(2*y_L-23)^{\\smash{2}}+(4-y_L)^{\\smash{2}}=45"
"4*y_L^2-92*y_L+529+16-8*y_L+y_L^2-45=0"
"500-100*y_L+5*y_L^2=0"
"100-20*y_L+*y_L^2=0"
"(10-y_L)^2=0\\implies y_L=10"
Substitute value of yL in equation (4):
"x_L=39-2*10=19"
Coordinates of point that partitions segment AB in a ratio of 1:5 is (19;10)
Comments
Leave a comment