Question #90264
The coordinates of points A and B are A (16,4) and B (34,40). What are the coordinates of a point that partitions segment AB in a ratio of 1:5?
1
Expert's answer
2019-05-27T13:08:53-0400

Let's find the length of AB:


(1) AB=(x2x1)2+(y2y1)2AB=\sqrt{\smash[b]{(x_2-x_1)}^{\smash{2}}+{(y_2-y_1)}^{\smash{2}}}


AB=(3416)2+(404)2AB=\sqrt{\smash[b]{(34-16)}^{\smash{2}}+{(40-4)}^{\smash{2}}}


AB=324+1296=1620=185AB=\sqrt{\smash[b]324+1296}=\sqrt{\smash[b]1620}=18*\sqrt{\smash[b]5}


Let point L (xL;yL) will be a point that partition segment AB in a ratio of 1:5. It means that:


AL=AB16AL=AB*\frac{1}{6} and BL=AB56BL=AB*\frac{5}{6}


Lengths of segments AL and BL are respectively equal:


(2) AL=(xAxL)2+(yAyL)2=18(5)/6=3(5)AL=\sqrt{\smash[b]{(x_A-x_L)}^{\smash{2}}+{(y_A-y_L)}^{\smash{2}}}=18*\sqrt{\smash[b]{(5)}}/6=3*\sqrt{\smash[b]{(5)}}


(3) BL=(xBxL)2+(yByL)2=18(5)5/6=15(5)BL=\sqrt{\smash[b]{(x_B-x_L)}^{\smash{2}}+{(y_B-y_L)}^{\smash{2}}}=18*\sqrt{\smash[b]{(5)}}*5/6=15*\sqrt{\smash[b]{(5)}}


We now coordinates of points A (16;4) and B (34;40):


{(16xL)2+(4yL)2=3(5)(34xL)2+(40yL)2=15(5)\begin{cases} \sqrt{\smash[b]{(16-x_L)}^{\smash{2}}+{(4-y_L)}^{\smash{2}}}=3*\sqrt{\smash[b]{(5)}} \\ \sqrt{\smash[b]{(34-x_L)}^{\smash{2}}+{(40-y_L)}^{\smash{2}}}=15*\sqrt{\smash[b]{(5)}} \end{cases}


{(16xL)2+(4yL)2=45(34xL)2+(40yL)2=1125\begin{cases} (16-x_L)^{\smash{2}}+(4-y_L)^{\smash{2}}=45 \\ (34-x_L)^{\smash{2}}+(40-y_L)^{\smash{2}}=1125 \end{cases}


{25632xL+xL2+168yL+yL2=45115668xL+xL2+160080yL+yL2=1125\begin{cases} 256-32*x_L+x_L^2+16-8*y_L+y_L^2=45 \\ 1156-68*x_L+x_L^2+1600-80*y_L+y_L^2=1125 \end{cases}


Let's subtract the first equation from the second:


90036xL+158472yL=1080900-36*x_L+1584-72*y_L=1080


39xL2yL=039-x_L-2*y_L=0


(4) xL=392yLx_L=39-2*y_L


Substitute value of xL in equation (2):


(1639+2yL)2+(4yL)2=3(5)\sqrt{\smash[b]{(16-39+2*y_L)}^{\smash{2}}+{(4-y_L)}^{\smash{2}}}=3*\sqrt{\smash[b]{(5)}}


(2yL23)2+(4yL)2=45(2*y_L-23)^{\smash{2}}+(4-y_L)^{\smash{2}}=45


4yL292yL+529+168yL+yL245=04*y_L^2-92*y_L+529+16-8*y_L+y_L^2-45=0


500100yL+5yL2=0500-100*y_L+5*y_L^2=0


10020yL+yL2=0100-20*y_L+*y_L^2=0


(10yL)2=0    yL=10(10-y_L)^2=0\implies y_L=10


Substitute value of yL in equation (4):


xL=39210=19x_L=39-2*10=19


Coordinates of point that partitions segment AB in a ratio of 1:5 is (19;10)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS