Let's find the length of AB:
(1) AB=(x2−x1)2+(y2−y1)2
AB=(34−16)2+(40−4)2
AB=324+1296=1620=18∗5
Let point L (xL;yL) will be a point that partition segment AB in a ratio of 1:5. It means that:
AL=AB∗61 and BL=AB∗65
Lengths of segments AL and BL are respectively equal:
(2) AL=(xA−xL)2+(yA−yL)2=18∗(5)/6=3∗(5)
(3) BL=(xB−xL)2+(yB−yL)2=18∗(5)∗5/6=15∗(5)
We now coordinates of points A (16;4) and B (34;40):
{(16−xL)2+(4−yL)2=3∗(5)(34−xL)2+(40−yL)2=15∗(5)
{(16−xL)2+(4−yL)2=45(34−xL)2+(40−yL)2=1125
{256−32∗xL+xL2+16−8∗yL+yL2=451156−68∗xL+xL2+1600−80∗yL+yL2=1125
Let's subtract the first equation from the second:
900−36∗xL+1584−72∗yL=1080
39−xL−2∗yL=0
(4) xL=39−2∗yL
Substitute value of xL in equation (2):
(16−39+2∗yL)2+(4−yL)2=3∗(5)
(2∗yL−23)2+(4−yL)2=45
4∗yL2−92∗yL+529+16−8∗yL+yL2−45=0
500−100∗yL+5∗yL2=0
100−20∗yL+∗yL2=0
(10−yL)2=0⟹yL=10
Substitute value of yL in equation (4):
xL=39−2∗10=19
Coordinates of point that partitions segment AB in a ratio of 1:5 is (19;10)
Comments