For A(3,-1,2), B(1,-1,2) and C(4,-2,1) vector area of triangle is:
1 2 ( A B → × A C → ) \frac 1 2 (\overrightarrow{AB} \times \overrightarrow{AC}) 2 1 ( A B × A C ) A B → = ( 1 − 3 ) i → + ( − 1 + 1 ) j → + ( 2 − 2 ) k → = − 2 i → \overrightarrow{AB}=(1-3)\overrightarrow{i}+(-1+1)\overrightarrow{j}+(2-2)\overrightarrow{k}=-2\overrightarrow{i} A B = ( 1 − 3 ) i + ( − 1 + 1 ) j + ( 2 − 2 ) k = − 2 i A C → = ( 4 − 3 ) i → + ( − 2 + 1 ) j → + ( 1 − 2 ) k → = i → − j → − k → \overrightarrow{AC}=(4-3)\overrightarrow{i}+(-2+1)\overrightarrow{j}+(1-2)\overrightarrow{k}=\overrightarrow{i}-\overrightarrow{j}-\overrightarrow{k} A C = ( 4 − 3 ) i + ( − 2 + 1 ) j + ( 1 − 2 ) k = i − j − k ( A B → × A C → ) = ∣ i → j → k → − 2 0 0 1 − 1 − 1 ∣ = 0 i → − 2 j → + 2 k → = − 2 j → + 2 k → (\overrightarrow{AB} \times \overrightarrow{AC})=\begin{vmatrix}
\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\
-2 & 0 & 0 \\
1 & -1 & -1
\end{vmatrix} =0\overrightarrow{i}-2\overrightarrow{j}+2\overrightarrow{k}=-2\overrightarrow{j}+2\overrightarrow{k} ( A B × A C ) = ∣ ∣ i − 2 1 j 0 − 1 k 0 − 1 ∣ ∣ = 0 i − 2 j + 2 k = − 2 j + 2 k vector area of triangle ABC:
1 2 ( A B → × A C → ) = − j → + k → \frac 1 2 (\overrightarrow{AB} \times \overrightarrow{AC})=-\overrightarrow{j}+\overrightarrow{k} 2 1 ( A B × A C ) = − j + k area of triangle ABC:
a r e a = ∣ 1 2 ( A B → × A C → ) ∣ = ( − 1 ) 2 + 1 2 = 2 area=|\frac 1 2 (\overrightarrow{AB} \times \overrightarrow{AC})|=\sqrt{(-1)^2+1^2}=\sqrt 2 a re a = ∣ 2 1 ( A B × A C ) ∣ = ( − 1 ) 2 + 1 2 = 2
Comments