For A(3,-1,2), B(1,-1,2) and C(4,-2,1) vector area of triangle is:
"\\frac 1 2 (\\overrightarrow{AB} \\times \\overrightarrow{AC})""\\overrightarrow{AB}=(1-3)\\overrightarrow{i}+(-1+1)\\overrightarrow{j}+(2-2)\\overrightarrow{k}=-2\\overrightarrow{i}""\\overrightarrow{AC}=(4-3)\\overrightarrow{i}+(-2+1)\\overrightarrow{j}+(1-2)\\overrightarrow{k}=\\overrightarrow{i}-\\overrightarrow{j}-\\overrightarrow{k}""(\\overrightarrow{AB} \\times \\overrightarrow{AC})=\\begin{vmatrix}\n \\overrightarrow{i} & \\overrightarrow{j} & \\overrightarrow{k} \\\\\n -2 & 0 & 0 \\\\\n 1 & -1 & -1\n\\end{vmatrix} =0\\overrightarrow{i}-2\\overrightarrow{j}+2\\overrightarrow{k}=-2\\overrightarrow{j}+2\\overrightarrow{k}" vector area of triangle ABC:
"\\frac 1 2 (\\overrightarrow{AB} \\times \\overrightarrow{AC})=-\\overrightarrow{j}+\\overrightarrow{k}" area of triangle ABC:
"area=|\\frac 1 2 (\\overrightarrow{AB} \\times \\overrightarrow{AC})|=\\sqrt{(-1)^2+1^2}=\\sqrt 2"
Comments
Leave a comment