Question #88604
Calculate the area of a triangle whose vertices are given by (3, −1, 2), (1, −1, 2) and (4, −2, 1)
1
Expert's answer
2019-04-26T09:36:34-0400

For A(3,-1,2), B(1,-1,2) and C(4,-2,1) vector area of triangle is:


12(AB×AC)\frac 1 2 (\overrightarrow{AB} \times \overrightarrow{AC})AB=(13)i+(1+1)j+(22)k=2i\overrightarrow{AB}=(1-3)\overrightarrow{i}+(-1+1)\overrightarrow{j}+(2-2)\overrightarrow{k}=-2\overrightarrow{i}AC=(43)i+(2+1)j+(12)k=ijk\overrightarrow{AC}=(4-3)\overrightarrow{i}+(-2+1)\overrightarrow{j}+(1-2)\overrightarrow{k}=\overrightarrow{i}-\overrightarrow{j}-\overrightarrow{k}(AB×AC)=ijk200111=0i2j+2k=2j+2k(\overrightarrow{AB} \times \overrightarrow{AC})=\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -2 & 0 & 0 \\ 1 & -1 & -1 \end{vmatrix} =0\overrightarrow{i}-2\overrightarrow{j}+2\overrightarrow{k}=-2\overrightarrow{j}+2\overrightarrow{k}

vector area of triangle ABC:


12(AB×AC)=j+k\frac 1 2 (\overrightarrow{AB} \times \overrightarrow{AC})=-\overrightarrow{j}+\overrightarrow{k}

area of triangle ABC:


area=12(AB×AC)=(1)2+12=2area=|\frac 1 2 (\overrightarrow{AB} \times \overrightarrow{AC})|=\sqrt{(-1)^2+1^2}=\sqrt 2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS